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Preface

Perhaps the topic that I am most asked about is how to use deep learning methods for time
series forecasting. Questions range from how to prepare data for deep learning models to what
models to use for specific types of forecasting problems. This book was carefully designed to
address these questions and show you exactly how to apply deep learning methods to time series
forecasting problems.

In writing this book, I imagined that you were provided with a dataset and a desire to use
deep learning methods to address it. I designed the chapters to walk you through the process of
first establishing a baseline of performance with naive and classical methods. I then provide
step-by-step tutorials to show exactly how to develop a suite of different types of neural network
models for time series forecasting. After we cover these basics, I then hammer home how to use
them on real-world datasets with example after example on larger projects. This is not a book
for beginners. The focus on deep learning methods means that we won’t focus on many other
important areas of time series forecasting, such as data visualization, how classical methods
work, the development of machine learning solutions, or even depth and details on how the deep
learning methods work. I assume that you are familiar with these introductory topics.

Deep learning methods do offer a lot of promise for time series forecasting, specifically the
automatic learning of temporal dependence and the automatic handling of temporal structures
like trends and seasonality. Unfortunately, deep learning methods are often developed for
univariate time series forecasting problems and often perform worse than classical and even
naive forecasting methods. This has led to their general dismissal as being unsuitable for time
series forecasting in general. Nevertheless, deep learning methods are effective at more complex
time series forecasting problems that involve large amounts of data, multiple variates with
complex relationships, and even multi-step and time series classification tasks.

A limitation I saw in the adoption of deep learning methods for time series forecasting was in
the exclusive exploration of recurrent neural networks, such as LSTM networks. These methods
can work well in some situations, but can often perform better when used in hybrid models
with CNNs or other variations. Therefore, I have ensured that examples of each class of neural
network and hybrid models were demonstrated throughout the book. In addition to providing a
playbook to show you how to develop deep learning models for your own time series forecasting
problems, I designed this book to highlight the areas where deep learning methods may show
the most promise. Deep learning may be the future of complex and challenging time series
forecasting and I think this book will help you get started and make rapid progress on your own
forecasting problems. I hope that you agree and are as excited as I am about the journey ahead.

Jason Brownlee
2018
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Welcome

Welcome to Deep Learning for Time Series Forecasting. Deep learning methods, such as
Multilayer Perceptrons, Convolutional Neural Networks, and Long Short-Term Memory Networks,
can be used to automatically learn the temporal dependence structures for challenging time
series forecasting problems. Neural networks may not be the best solution for all time series
forecasting problems, but for those problems where classical methods fail and machine learning
methods require elaborate feature engineering, deep learning methods can be used with great
success. This book was designed to teach you, step-by-step, how to develop deep learning
methods for time series forecasting with concrete and executable examples in Python.

Who Is This Book For?

Before we get started, let’s make sure you are in the right place. This book is for developers that
may know some applied machine learning. Maybe you know how to work through a predictive
modeling problem end-to-end, or at least most of the main steps, with popular tools. The
lessons in this book do assume a few things about you, such as:

� You know your way around basic Python for programming.

� You know some basic time series forecasting with classical methods such as naive forecasts,
ARIMA, or exponential smoothing.

� You know how to work through a predictive modeling problem using machine learning or
deep learning methods and libraries such as scikit-learn or Keras.

� You have some background knowledge on how neural network models work, perhaps at a
high level.

� You want to learn how to develop a suite of deep learning methods to get more from new
or existing time series forecasting problems.

This guide was written in the top-down and results-first machine learning style that you’re
used to from Machine Learning Mastery.

About Your Outcomes

This book will teach you the practical deep learning skills that you need to know for time series
forecasting. After reading and working through this book, you will know:

xii
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� About the promise of neural networks and deep learning methods in general for time series
forecasting.

� How to transform time series data in order to train a supervised learning algorithm, such
as deep learning methods.

� How to develop baseline forecasts using naive and classical methods by which to determine
whether forecasts from deep learning models have skill or not.

� How to develop Multilayer Perceptron, Convolutional Neural Network, Long Short-Term
Memory Networks, and hybrid neural network models for time series forecasting.

� How to forecast univariate, multivariate, multi-step, and multivariate multi-step time
series forecasting problems in general.

� How to transform sequence data into a three-dimensional structure in order to train
convolutional and LSTM neural network models.

� How to grid search deep learning model hyperparameters to ensure that you are getting
good performance from a given model.

� How to prepare data and develop deep learning models for forecasting a range of univariate
time series problems with different temporal structures.

� How to prepare data and develop deep learning models for multi-step forecasting a
real-world household electricity consumption dataset.

� How to prepare data and develop deep learning models for a real-world human activity
recognition project.

This new understanding of applied deep learning methods will impact your practice of
working through time series forecasting problems in the following ways:

� Confidently use naive and classical methods like SARIMA and ETS to quickly develop
robust baseline models for a range of different time series forecasting problems, the
performance of which can be used to challenge whether more elaborate machine learning
and deep learning models are adding value.

� Transform native time series forecasting data into a form for fitting supervised learning
algorithms and confidently tune the amount of lag observations and framing of the
prediction problem.

� Develop MLP, CNN, RNN, and hybrid deep learning models quickly for a range of different
time series forecasting problems, and confidently evaluate and interpret their performance.

This book is not a substitute for an undergraduate course in deep learning or time series
forecasting, nor is it a textbook for such courses, although it could be a useful complement. For
a good list of top courses, textbooks, and other resources on statistics, see the Further Reading
section at the end of each tutorial.
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How to Read This Book

This book was written to be read linearly, from start to finish. That being said, if you know the
basics and need help with a specific method or type of problem, then you can flip straight to
that section and get started. This book was designed for you to read on your workstation, on
the screen, not on a tablet or eReader. My hope is that you have the book open right next to
your editor and run the examples as you read about them.

This book is not intended to be read passively or be placed in a folder as a reference text. It
is a playbook, a workbook, and a guidebook intended for you to learn by doing and then apply
your new understanding with working Python examples. To get the most out of the book, I
would recommend playing with the examples in each tutorial. Extend them, break them, then
fix them. Try some of the extensions presented at the end of each lesson and let me know how
you do.

About the Book Structure

This book was designed around major deep learning techniques that are directly relevant to
time series forecasting. There are a lot of things you could learn about deep learning and time
series forecasting, from theory to abstract concepts to APIs. My goal is to take you straight to
developing an intuition for the elements you must understand with laser-focused tutorials. I
designed the tutorials to focus on how to get results with deep learning methods. The tutorials
give you the tools to both rapidly understand and apply each technique or operation. There is
a mixture of both tutorial lessons and projects to both introduce the methods and give plenty
examples and opportunity to practice using them.

Each of the tutorials are designed to take you about one hour to read through and complete,
excluding the extensions and further reading. You can choose to work through the lessons one
per day, one per week, or at your own pace. I think momentum is critically important, and this
book is intended to be read and used, not to sit idle. I would recommend picking a schedule
and sticking to it. The tutorials are divided into five parts; they are:

� Part 1: Foundations. Provides a gentle introduction to the promise of deep learning
methods for time series forecasting, a taxonomy of the types of time series forecasting
problems, how to prepare time series data for supervised learning, and a high-level
procedure for getting the best performing model on time series forecasting problems in
general.

� Part 2: Deep Learning Modeling. Provides a step-by-step introduction to deep
learning methods applied to different types of time series forecasting problems with
additional tutorials to better understand the 3D-structure required for some models.

� Part 3: Univariate Forecasting. Provides a methodical approach to univariate time
series forecasting with a focus on naive and classical methods that are generally known
to out-perform deep learning methods and how to grid search deep learning model
hyperparameters.

� Part 4: Multi-step Forecasting. Provides a step-by-step series of tutorials for working
through a challenging multi-step time series forecasting problem for predicting household
electricity consumption using classical and deep learning methods.
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� Part 5: Time Series Classification. Provides a step-by-step series of tutorials for
working through a challenging time series classification problem for predicting human
activity from accelerometer data using deep learning methods.

Each part targets a specific learning outcome, and so does each tutorial within each part.
This acts as a filter to ensure you are only focused on the things you need to know to get to a
specific result and do not get bogged down in the math or near-infinite number of digressions.
The tutorials were not designed to teach you everything there is to know about each of the
methods. They were designed to give you an understanding of how they work, how to use them,
and how to interpret the results the fastest way I know how: to learn by doing.

About Python Code Examples

The code examples were carefully designed to demonstrate the purpose of a given lesson. Code
examples are complete and standalone. The code for each lesson will run as-is with no code
from prior lessons or third-parties required beyond the installation of the required packages. A
complete working example is presented with each tutorial for you to inspect and copy-paste.
All source code is also provided with the book and I would recommend running the provided
files whenever possible to avoid any copy-paste issues.

The provided code was developed in a text editor and intended to be run on the command
line. No special IDE or notebooks are required. If you are using a more advanced development
environment and are having trouble, try running the example from the command line instead.
All code examples were tested on a POSIX-compatible machine with Python 3.

About Further Reading

Each lesson includes a list of further reading resources. This may include:

� Books and book chapters.

� API documentation.

� Articles and Webpages.

Wherever possible, I try to list and link to the relevant API documentation for key functions
used in each lesson so you can learn more about them. I have tried to link to books on Amazon
so that you can learn more about them. I don’t know everything, and if you discover a good
resource related to a given lesson, please let me know so I can update the book.

About Getting Help

You might need help along the way. Don’t worry; you are not alone.

� Help with a Technique? If you need help with the technical aspects of a specific
operation or technique, see the Further Reading section at the end of each tutorial.
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� Help with APIs? If you need help with using the Keras library, see the list of resources
in the Further Reading section at the end of each lesson, and also see Appendix A.

� Help with your workstation? If you need help setting up your environment, I would
recommend using Anaconda and following my tutorial in Appendix B.

� Help with practice problems? If you are looking for test sets on which to practice
developing deep learning models, you can see a prepared list of standard time series
forecasting problems in Appendix A.

� Help in general? You can shoot me an email. My details are in Appendix A.

Summary

Are you ready? Let’s dive in! Next up you will discover a gentle introduction to the promise of
deep learning methods for time series forecasting.
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Overview

This part motivates the use of deep learning for time series forecasting and provides frameworks
to allow you to work through a new forecasting problems systematically and ensure that your
final model is robust and defensible. After reading the chapters in this part, you will know:

� The promise that the capabilities of deep learning methods offer for addressing challenging
time series forecasting problems (Chapter 1).

� How to systematically identify the properties of a time series forecasting problem using a
taxonomy and framework of questions (Chapter 2).

� How to systematically work through a new time series forecasting problem to ensure
that you are getting the most out of naive, classical, machine learning and deep learning
forecasting methods (Chapter 3).

� How to generally transform a sequence of observations in a time series into samples
with input and output elements suitable for training a supervised learning algorithm
(Chapter 4).

� How naive and the top performing classical methods such as SARIMA and ETS work and
how to use them prior to exploring more advanced forecasting methods (Chapter 5).

2



Chapter 1

Promise of Deep Learning for Time
Series Forecasting

Deep learning neural networks are able to automatically learn arbitrary complex mappings from
inputs to outputs and support multiple inputs and outputs. These are powerful features that
offer a lot of promise for time series forecasting, particularly on problems with complex-nonlinear
dependencies, multivalent inputs, and multi-step forecasting. These features along with the
capabilities of more modern neural networks may offer great promise such as the automatic
feature learning provided by convolutional neural networks and the native support for sequence
data in recurrent neural networks. In this tutorial, you will discover the promised capabilities of
deep learning neural networks for time series forecasting. After reading this tutorial, you will
know:

� The focus and implicit, if not explicit, limitations on classical time series forecasting
methods.

� The general capabilities of Multilayer Perceptrons and how they may be harnessed for
time series forecasting.

� The added capabilities of feature learning and native support for sequences provided by
Convolutional Neural Networks and Recurrent Neural Networks.

Let’s get started.

1.1 Time Series Forecasting

Time series forecasting is difficult. Unlike the simpler problems of classification and regression,
time series problems add the complexity of order or temporal dependence between observations.
This can be difficult as specialized handling of the data is required when fitting and evaluating
models. This temporal structure can also aid in modeling, providing additional structure like
trends and seasonality that can be leveraged to improve model skill. Traditionally, time series
forecasting has been dominated by linear methods like ARIMA because they are well understood
and effective on many problems. But these classical methods also suffer from some limitations,
such as:

� Focus on complete data: missing or corrupt data is generally unsupported.

3
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� Focus on linear relationships: assuming a linear relationship excludes more complex
joint distributions.

� Focus on fixed temporal dependence: the relationship between observations at
different times, and in turn the number of lag observations provided as input, must be
diagnosed and specified.

� Focus on univariate data: many real-world problems have multiple input variables.

� Focus on one-step forecasts: many real-world problems require forecasts with a long
time horizon.

Machine learning methods can be effective on more complex time series forecasting problems
with multiple input variables, complex nonlinear relationships, and missing data. In order to
perform well, these methods often require hand-engineered features prepared by either domain
experts or practitioners with a background in signal processing.

Existing techniques often depended on hand-crafted features that were expensive to
create and required expert knowledge of the field.

— Deep Learning for Time-Series Analysis, 2017.

1.2 Multilayer Perceptrons for Time Series

Simpler neural networks such as the Multilayer Perceptron or MLP approximate a mapping
function from input variables to output variables. This general capability is valuable for time
series for a number of reasons.

� Robust to Noise. Neural networks are robust to noise in input data and in the mapping
function and can even support learning and prediction in the presence of missing values.

� Nonlinear. Neural networks do not make strong assumptions about the mapping function
and readily learn linear and nonlinear relationships.

... one important contribution of neural networks - namely their elegant ability to
approximate arbitrary nonlinear functions. This property is of high value in time
series processing and promises more powerful applications, especially in the subfield
of forecasting ...

— Neural Networks for Time Series Processing, 1996.

More specifically, neural networks can be configured to support an arbitrary defined but
fixed number of inputs and outputs in the mapping function. This means that neural networks
can directly support:

� Multivariate Inputs. An arbitrary number of input features can be specified, providing
direct support for multivariate forecasting.
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� Multi-step Forecasts. An arbitrary number of output values can be specified, providing
direct support for multi-step and even multivariate forecasting.

For these capabilities alone, feedforward neural networks may be useful for time series
forecasting. Implicit in the usage of neural networks is the requirement that there is indeed a
meaningful mapping from inputs to outputs to learn. Modeling a mapping of a random walk
will perform no better than a persistence model (e.g. using the last seen observation as the
forecast). This expectation of a learnable mapping function also makes one of the limitations
clear: the mapping function is fixed or static.

� Fixed Inputs. The number of lag input variables is fixed, in the same way as traditional
time series forecasting methods.

� Fixed Outputs. The number of output variables is also fixed; although a more subtle
issue, it means that for each input pattern, one output must be produced.

Sequences pose a challenge for [deep neural networks] because they require that the
dimensionality of the inputs and outputs is known and fixed.

— Sequence to Sequence Learning with Neural Networks, 2014.

Feedforward neural networks do offer great capability but still suffer from this key limitation
of having to specify the temporal dependence upfront in the design of the model. This dependence
is almost always unknown and must be discovered and teased out from detailed analysis in a
fixed form.

1.3 Convolutional Neural Networks for Time Series

Convolutional Neural Networks or CNNs are a type of neural network that was designed to
efficiently handle image data. They have proven effective on challenging computer vision
problems both achieving state-of-the-art results on tasks like image classification and providing
a component in hybrid models for entirely new problems such as object localization, image
captioning and more.

They achieve this by operating directly on raw data, such as raw pixel values, instead of
domain-specific or handcrafted features derived from the raw data. The model then learns how
to automatically extract the features from the raw data that are directly useful for the problem
being addressed. This is called representation learning and the CNN achieves this in such a way
that the features are extracted regardless of how they occur in the data, so-called transform or
distortion invariance.

Convolutional networks combine three architectural ideas to ensure some degree
of shift and distortion invariance: local receptive fields, shared weights (or weight
replication), and, sometimes, spatial or temporal subsampling.

— Convolutional Networks for Images, Speech, and Time-Series, 1998.

The ability of CNNs to learn and automatically extract features from raw input data can be
applied to time series forecasting problems. A sequence of observations can be treated like a
one-dimensional image that a CNN model can read and distill into the most salient elements.
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The key attribute of the CNN is conducting different processing units [...] Such a
variety of processing units can yield an effective representation of local salience of
the signals. Then, the deep architecture allows multiple layers of these processing
units to be stacked, so that this deep learning model can characterize the salience of
signals in different scales.

— Deep Convolutional Neural Networks On Multichannel Time Series For Human Activity
Recognition, 2015.

This capability of CNNs has been demonstrated to great effect on time series classification
tasks such as automatically detecting human activities based on raw accelerator sensor data
from fitness devices and smartphones.

The key advantages of [CNNs for activity recognition] are: i) feature extraction is
performed in task dependent and non hand-crafted manners; ii) extracted features
have more discriminative power w.r.t. the classes of human activities; iii) feature
extraction and classification are unified in one model so their performances are
mutually enhanced.

— Deep Convolutional Neural Networks On Multichannel Time Series For Human Activity
Recognition, 2015.

CNNs get the benefits of Multilayer Perceptrons for time series forecasting, namely support
for multivariate input, multivariate output and learning arbitrary but complex functional
relationships, but do not require that the model learn directly from lag observations. Instead,
the model can learn a representation from a large input sequence that is most relevant for the
prediction problem.

� Feature Learning. Automatic identification, extraction and distillation of salient features
from raw input data that pertain directly to the prediction problem that is being modeled.

1.4 Recurrent Neural Networks for Time Series

Recurrent neural networks like the Long Short-Term Memory network or LSTM add the explicit
handling of order between observations when learning a mapping function from inputs to outputs,
not offered by MLPs or CNNs. They are a type of neural network that adds native support for
input data comprised of sequences of observations.

� Native Support for Sequences. Recurrent neural networks directly add support for
input sequence data.

The addition of sequence is a new dimension to the function being approximated. Instead of
mapping inputs to outputs alone, the network is capable of learning a mapping function for the
inputs over time to an output.

Long Short-Term Memory (LSTM) is able to solve many time series tasks unsolvable
by feedforward networks using fixed size time windows.
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— Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001.

This capability of LSTMs has been used to great effect in complex natural language processing
problems such as neural machine translation where the model must learn the complex inter-
relationships between words both within a given language and across languages in translating
form one language to another. This capability can be used in time series forecasting. In addition
to the general benefits of using neural networks for time series forecasting, recurrent neural
networks can also automatically learn the temporal dependence from the data.

� Learned Temporal Dependence. The most relevant context of input observations to
the expected output is learned and can change dynamically.

In the simplest case, the network is shown one observation at a time from a sequence and
can learn what observations it has seen previously are relevant and how they are relevant to
forecasting. The model both learns a mapping from inputs to outputs and learns what context
from the input sequence is useful for the mapping, and can dynamically change this context as
needed.

Because of this ability to learn long term correlations in a sequence, LSTM networks
obviate the need for a pre-specified time window and are capable of accurately
modelling complex multivariate sequences.

— Long Short Term Memory Networks for Anomaly Detection in Time Series, 2015.

1.5 Promise of Deep Learning

The capabilities of deep learning neural networks suggest a good fit for time series forecasting.
By definition and with enough resources, neural networks in general should be able to subsume
the capabilities of classical linear forecasting methods given their ability to learn arbitrary
complex mapping from inputs to outputs.

� Neural networks learn arbitrary mapping functions.

It is good practice to manually identify and remove systematic structures from time series
data to make the problem easier to model (e.g. make the series stationary), and this may still
be a best practice when using recurrent neural networks. But, the general capability of these
networks suggests that this may not be a requirement for a skillful model. Technically, the
available context of the sequence provided as input may allow neural network models to learn
both trend and seasonality directly.

� Neural networks may not require a scaled or stationary time series as input

Each of the three classes of neural network models discussed, MLPs, CNNs and RNNs offer
capabilities that are challenging for classical time series forecasting methods, namely:

� Neural networks support multivariate inputs.

� Neural networks support multi-step outputs.
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Although MLPs can operate directly on raw observations, CNNs offer efficiency and much
greater performance at automatically learning to identify, extract and distill useful features
from raw data.

� Convolutional neural networks support efficient feature learning.

Although MLPs and CNNs can learn arbitrary mapping functions, the explicit addition of
support for input sequences in RNNs offers efficiency and greater performance for automatically
learning the temporal dependencies both within the input sequence and from the input sequence
to the output.

� LSTM networks support efficient learning of temporal dependencies.

These capabilities can also be combined, such as in the use of hybrid models like CNN-LSTMs
and ConvLSTMs that seek to harness the capabilities of all three model types.

� Hybrid models efficiently combine the diverse capabilities of different architectures.

Traditionally, a lot of research has been invested into using MLPs for time series forecasting
with modest results (covered in Chapter 10). Perhaps the most promising area in the application
of deep learning methods to time series forecasting are in the use of CNNs, LSTMs and hybrid
models. These areas will be our primary focus throughput this book.

1.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Your Expectations. List three of your own expectations of deep learning methods for
time series forecasting, perhaps expectations you had before reading this tutorial.

� Known Limitations. Research and list or quote three limitations of deep learning
methods for time series forecasting listed in the literature.

� Successful Example. Find one research paper that presents a successful application of
deep learning methods for time series forecasting.

If you explore any of these extensions, I’d love to know.

1.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Deep Learning for Time-Series Analysis, 2017.
https://arxiv.org/abs/1701.01887

� Neural Networks for Time Series Processing, 1996.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5697

https://arxiv.org/abs/1701.01887
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5697
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� Sequence to Sequence Learning with Neural Networks, 2014.
https://arxiv.org/abs/1409.3215

� Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001.
https://link.springer.com/chapter/10.1007/3-540-44668-0_93

� Long Short Term Memory Networks for Anomaly Detection in Time Series, 2015.
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf

� Convolutional Networks for Images, Speech, and Time-Series, 1998.
https://dl.acm.org/citation.cfm?id=303704

� Deep Convolutional Neural Networks On Multichannel Time Series For Human Activity
Recognition, 2015.
https://dl.acm.org/citation.cfm?id=2832806

1.8 Summary

In this tutorial, you discovered the promised capabilities of deep learning neural networks for
time series forecasting. Specifically, you learned:

� The focus and implicit, if not explicit, limitations on classical time series forecasting
methods.

� The general capabilities of Multilayer Perceptrons and how they may be harnessed for
time series forecasting.

� The added capabilities of feature learning and native support for sequences provided by
Convolutional Neural Networks and Recurrent Neural Networks.

1.8.1 Next

In the next lesson, you will discover a taxonomy that you can use to quickly learn a lot about
your time series forecasting problem.

https://arxiv.org/abs/1409.3215
https://link.springer.com/chapter/10.1007/3-540-44668-0_93
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
https://dl.acm.org/citation.cfm?id=303704
https://dl.acm.org/citation.cfm?id=2832806


Chapter 2

Taxonomy of Time Series Forecasting
Problems

When you are presented with a new time series forecasting problem, there are many things to
consider. The choice that you make directly impacts each step of the project from the design of
a test harness to evaluate forecast models to the fundamental difficulty of the forecast problem
that you are working on. It is possible to very quickly narrow down the options by working
through a series of questions about your time series forecasting problem. By considering a few
themes and questions within each theme, you narrow down the type of problem, test harness,
and even choice of algorithms for your project. In this tutorial, you will discover a framework
that you can use to quickly understand and frame your time series forecasting problem. After
reading this tutorial, you will know:

� A structured way of thinking about time series forecasting problems.

� A framework to uncover the characteristics of a given time series forecasting problem.

� A suite of specific questions, the answers to which will help to define your forecasting
problem.

Let’s get started.

2.1 Framework Overview

Time series forecasting involves developing and using a predictive model on data where there is
an ordered relationship between observations. Before you get started on your project, you can
answer a few questions and greatly improve your understanding of the structure of your forecast
problem, the structure of the model requires, and how to evaluate it. The framework presented
in this tutorial is divided into seven parts; they are:

1. Inputs vs. Outputs.

2. Endogenous vs. Exogenous.

3. Unstructured vs. Structured.

10



2.2. Inputs vs. Outputs 11

4. Regression vs. Classification.

5. Univariate vs. Multivariate.

6. Single-step vs. Multi-step.

7. Static vs. Dynamic.

8. Contiguous vs. Discontiguous.

I recommend working through this framework before starting any time series forecasting
project. Your answers may not be crisp on the first time through and the questions may require
to you study the data, the domain, and talk to experts and stakeholders. Update your answers
as you learn more as it will help to keep you on track, avoid distractions, and develop the actual
model that you need for your project.

2.2 Inputs vs. Outputs

Generally, a prediction problem involves using past observations to predict or forecast one or
more possible future observations. The goal is to guess about what might happen in the future.
When you are required to make a forecast, it is critical to think about the data that you will
have available to make the forecast and what you will be guessing about the future. We can
summarize this as what are the inputs and outputs of the model when making a single forecast.

� Inputs: Historical data provided to the model in order to make a single forecast.

� Outputs: Prediction or forecast for a future time step beyond the data provided as input.

The input data is not the data used to train the model. We are not at that point yet. It is
the data used to make one forecast, for example the last seven days of sales data to forecast the
next one day of sales data. Defining the inputs and outputs of the model forces you to think
about what exactly is or may be required to make a forecast. You may not be able to be specific
when it comes to input data. For example, you may not know whether one or multiple prior
time steps are required to make a forecast. But you will be able to identify the variables that
could be used to make a forecast.

What are the inputs and outputs for a forecast?

2.3 Endogenous vs. Exogenous

The input data can be further subdivided in order to better understand its relationship to
the output variable. An input variable is endogenous if it is affected by other variables in
the system and the output variable depends on it. In a time series, the observations for an
input variable depend upon one another. For example, the observation at time t is dependent
upon the observation at t− 1; t− 1 may depend on t− 2, and so on. An input variable is an
exogenous variable if it is independent of other variables in the system and the output variable
depends upon it. Put simply, endogenous variables are influenced by other variables in the
system (including themselves) whereas as exogenous variables are not and are considered as
outside the system.
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� Endogenous: Input variables that are influenced by other variables in the system and
on which the output variable depends.

� Exogenous: Input variables that are not influenced by other variables in the system and
on which the output variable depends.

Typically, a time series forecasting problem has endogenous variables (e.g. the output is a
function of some number of prior time steps) and may or may not have exogenous variables.
Often, exogenous variables are ignored given the strong focus on the time series. Explicitly
thinking about both variable types may help to identify easily overlooked exogenous data or
even engineered features that may improve the model.

What are the endogenous and exogenous variables?

2.4 Regression vs. Classification

Regression predictive modeling problems are those where a quantity is predicted. A quantity is
a numerical value; for example a price, a count, a volume, and so on. A time series forecasting
problem in which you want to predict one or more future numerical values is a regression type
predictive modeling problem. Classification predictive modeling problems are those where a
category is predicted. A category is a label from a small well-defined set of labels; for example
hot, cold, up, down, and buy, sell are categories. A time series forecasting problem in which
you want to classify input time series data is a classification type predictive modeling problem.

� Regression: Forecast a numerical quantity.

� Classification: Classify as one of two or more labels.

Are you working on a regression or classification predictive modeling problem?

There is some flexibility between these types. For example, a regression problem can be
reframed as classification and a classification problem can be reframed as regression. Some
problems, like predicting an ordinal value, can be framed as either classification and regression.
It is possible that a reframing of your time series forecasting problem may simplify it.

What are some alternate ways to frame your time series forecasting problem?

2.5 Unstructured vs. Structured

It is useful to plot each variable in a time series and inspect the plot looking for possible
patterns. A time series for a single variable may not have any obvious pattern. We can think of
a series with no pattern as unstructured, as in there is no discernible time-dependent structure.
Alternately, a time series may have obvious patterns, such as a trend or seasonal cycles as
structured. We can often simplify the modeling process by identifying and removing the obvious
structures from the data, such as an increasing trend or repeating cycle. Some classical methods
even allow you to specify parameters to handle these systematic structures directly.
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� Unstructured: No obvious systematic time-dependent pattern in a time series variable.

� Structured: Systematic time-dependent patterns in a time series variable (e.g. trend
and/or seasonality).

Are the time series variables unstructured or structured?

2.6 Univariate vs. Multivariate

A single variable measured over time is referred to as a univariate time series. Univariate means
one variate or one variable. Multiple variables measured over time is referred to as a multivariate
time series: multiple variates or multiple variables.

� Univariate: One variable measured over time.

� Multivariate: Multiple variables measured over time.

Are you working on a univariate or multivariate time series problem?

Considering this question with regard to inputs and outputs may add a further distinction.
The number of variables may differ between the inputs and outputs, e.g. the data may not be
symmetrical. For example, you may have multiple variables as input to the model and only be
interested in predicting one of the variables as output. In this case, there is an assumption in
the model that the multiple input variables aid and are required in predicting the single output
variable.

� Univariate and Multivariate Inputs: One or multiple input variables measured over
time.

� Univariate and Multivariate Outputs: One or multiple output variables to be pre-
dicted.

2.7 Single-step vs. Multi-step

A forecast problem that requires a prediction of the next time step is called a one-step forecast
model. Whereas a forecast problem that requires a prediction of more than one time step is
called a multi-step forecast model. The more time steps to be projected into the future, the more
challenging the problem given the compounding nature of the uncertainty on each forecasted
time step.

� One-step: Forecast the next time step.

� Multi-step: Forecast more than one future time steps.

Do you require a single-step or a multi-step forecast?
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2.8 Static vs. Dynamic

It is possible to develop a model once and use it repeatedly to make predictions. Given that the
model is not updated or changed between forecasts, we can think of this model as being static.
Conversely, we may receive new observations prior to making a subsequent forecast that could
be used to create a new model or update the existing model. We can think of developing a new
or updated model prior to each forecasts as a dynamic problem.

For example, it if the problem requires a forecast at the beginning of the week for the week
ahead, we may receive the true observation at the end of the week that we can use to update
the model prior to making next weeks forecast. This would be a dynamic model. If we do not
get a true observation at the end of the week or we do and choose to not re-fit the model, this
would be a static model. We may prefer a dynamic model, but the constraints of the domain or
limitations of a chosen algorithm may impose constraints that make this intractable.

� Static. A forecast model is fit once and used to make predictions.

� Dynamic. A forecast model is fit on newly available data prior to each prediction.

Do you require a static or a dynamically updated model?

2.9 Contiguous vs. Discontiguous

A time series where the observations are uniform over time may be described as contiguous.
Many time series problems have contiguous observations, such as one observation each hour,
day, month or year. A time series where the observations are not uniform over time may be
described as discontiguous. The lack of uniformity of the observations may be caused by missing
or corrupt values. It may also be a feature of the problem where observations are only made
available sporadically or at increasingly or decreasingly spaced time intervals. In the case of
non-uniform observations, specific data formatting may be required when fitting some models
to make the observations uniform over time.

� Contiguous. Observations are made uniform over time.

� Discontiguous. Observations are not uniform over time.

Are your observations contiguous or discontiguous?

2.10 Framework Review

To review, the themes and questions you can ask about your problem are as follows:

1. Inputs vs. Outputs: What are the inputs and outputs for a forecast?

2. Endogenous vs. Exogenous: What are the endogenous and exogenous variables?

3. Unstructured vs. Structured: Are the time series variables unstructured or structured?
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4. Regression vs. Classification: Are you working on a regression or classification
predictive modeling problem? What are some alternate ways to frame your time series
forecasting problem?

5. Univariate vs. Multivariate: Are you working on a univariate or multivariate time
series problem?

6. Single-step vs. Multi-step: Do you require a single-step or a multi-step forecast?

7. Static vs. Dynamic: Do you require a static or a dynamically updated model?

8. Contiguous vs. Discontiguous: Are your observations contiguous or discontiguous?

2.11 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Apply Taxonomy. Select a standard time series dataset and work through the questions
in the taxonomy to learn more about the dataset.

� Standard Form. Transform the taxonomy into a form or spreadsheet that you can re-use
on new time series forecasting projects going forward.

� Additional Characteristic. Brainstorm and list at least one additional characteristic
of a time series forecasting problem and a question that you might used to identify it.

If you explore any of these extensions, I’d love to know.

2.12 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Machine Learning Strategies for Time Series Forecasting, 2013.
http://link.springer.com/chapter/10.1007%2F978-3-642-36318-4_3

� Recursive and direct multi-step forecasting: the best of both worlds, 2012.
https://econpapers.repec.org/paper/mshebswps/2012-19.htm

2.13 Summary

In this tutorial, you discovered a framework that you can use to quickly understand and frame
your time series forecasting problem. Specifically, you learned:

� A structured way of thinking about time series forecasting problems.

� A framework to uncover the characteristics of a given time series forecasting problem.

� A suite of specific questions, the answers to which will help to define your forecasting
problem.

http://link.springer.com/chapter/10.1007%2F978-3-642-36318-4_3
https://econpapers.repec.org/paper/mshebswps/2012-19.htm
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2.13.1 Next

In the next lesson, you will discover a systematic process to ensure that you get better than
average performance on your next time series forecasting project.



Chapter 3

How to Develop a Skillful Forecasting
Model

“Here is a dataset, now develop a forecast.” This is the normal situation that most practitioners
find themselves in when getting started on a new time series forecasting problem. You are not
alone if you are in this situation right now. In this tutorial, I want to give you a specific and
actionable procedure that you can use to work through your time series forecasting problem
and get better than average performance from your model. After reading this tutorial, you will
know:

� A systematic four-step process that you can use to work through any time series forecasting
problem.

� A list of models to evaluate and the order in which to evaluate them.

� A methodology that allows the choice of a final model to be defensible with empirical
evidence, rather than whim or fashion.

Let’s get started.

3.1 The Situation

You are handed data and told to develop a forecast model. What do you do? This is a common
situation; far more common than most people think.

� Perhaps you are sent a CSV file.

� Perhaps you are given access to a database.

� Perhaps you are starting a competition.

The problem can be reasonably well defined:

� You have or can access historical time series data.

� You know or can find out what needs to be forecasted.

17
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� You know or can find out how what is most important in evaluating a candidate model.

So how do you tackle this problem? Unless you have been through this trial by fire, you will
struggle.

� You may struggle because you are new to the fields of machine learning and time series.

� You may struggle even if you have machine learning experience because time series data
is different.

� You may struggle even if you have a background in time series forecasting because machine
learning methods may outperform the classical approaches on your data.

In all of these cases, you will benefit from working through the problem carefully and
systematically with a reusable process.

3.2 Process Overview

The goal of this process is to get a good enough forecast model as fast as possible. This process
may or may not deliver the best possible model, but it will deliver a good model: a model that
is better than a baseline prediction, if such a model exists. Typically, this process will deliver a
model that is 80% to 90% of what can be achieved on the problem.

The process is fast. As such, it focuses on automation. Hyperparameters are searched rather
than specified based on careful analysis. You are encouraged to test suites of models in parallel,
rapidly getting an idea of what works and what doesn’t. Nevertheless, the process is flexible,
allowing you to circle back or go as deep as you like on a given step if you have the time and
resources. This process is divided into four parts; they are:

1. Define Problem.

2. Design Test Harness.

3. Test Models.

4. Finalize Model.

You will notice that the process is different from a classical linear work-through of a predictive
modeling problem. This is because it is designed to get a working forecast model fast and then
slow down and see if you can get a better model.

3.3 How to Use This Process

The biggest mistake is skipping steps. For example, the mistake that almost all beginners make
is going straight to modeling without a strong idea of what problem is being solved or how to
robustly evaluate candidate solutions. This almost always results in a lot of wasted time. Slow
down, follow the process, and complete each step.

I recommend having separate code for each experiment that can be re-run at any time. This
is important so that you can circle back when you discover a bug, fix the code, and re-run an
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experiment. You are running experiments and iterating quickly, but if you are sloppy, then you
cannot trust any of your results. This is especially important when it comes to the design of
your test harness for evaluating candidate models. Let’s take a closer look at each step of the
process.

3.4 Step 1: Define Problem

Define your time series problem. Some topics to consider and motivating questions within each
topic (taken from the taxonomy in Chapter 2) are as follows:

1. Inputs vs. Outputs: What are the inputs and outputs for a forecast?

2. Endogenous vs. Exogenous: What are the endogenous and exogenous variables?

3. Unstructured vs. Structured: Are the time series variables unstructured or structured?

4. Regression vs. Classification: Are you working on a regression or classification
predictive modeling problem? What are some alternate ways to frame your time series
forecasting problem?

5. Univariate vs. Multivariate: Are you working on a univariate or multivariate time
series problem?

6. Single-step vs. Multi-step: Do you require a single-step or a multi-step forecast?

7. Static vs. Dynamic: Do you require a static or a dynamically updated model?

8. Contiguous vs. Discontiguous: Are your observations contiguous or discontiguous?

Some useful tools to help get answers include:

� Data visualizations (e.g. line plots, etc.).

� Statistical analysis (e.g. ACF/PACF plots, etc.).

� Domain experts.

� Project stakeholders.

Update your answers to these questions as you learn more.

3.5 Step 2: Design Test Harness

Design a test harness that you can use to evaluate candidate models. This includes both the
method used to estimate model skill and the metric used to evaluate predictions. Below is a
common time series forecasting model evaluation scheme if you are looking for ideas:

1. Split the dataset into a train and test set.

2. Fit a candidate approach on the training dataset.
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3. Make predictions on the test set directly or using walk-forward validation.

4. Calculate a metric that compares the predictions to the expected values.

The test harness must be robust and you must have complete trust in the results it provides.
An important consideration is to ensure that any coefficients used for data preparation are
estimated from the training dataset only and then applied on the test set. This might include
mean and standard deviation in the case of data standardization.

3.6 Step 3: Test Models

Test many models using your test harness. I recommend carefully designing experiments to test
a suite of configurations for standard models and letting them run. Each experiment can record
results to a file, to allow you to quickly discover the top three to five most skillful configurations
from each run. Some common classes of methods that you can design experiments around
include the following:

1. Baseline. Simple forecasting methods such as persistence and averages.

2. Autoregression. The Box-Jenkins process and methods such as SARIMA.

3. Exponential Smoothing. Single, double and triple exponential smoothing methods.

4. Linear Machine Learning. Linear regression methods and variants such as regulariza-
tion.

5. Nonlinear Machine Learning. kNN, decision trees, support vector regression and
more.

6. Ensemble Machine Learning. Random forest, gradient boosting, stacking and more.

7. Deep Learning. MLPs, CNNs, LSTMs, and Hybrid models.

This list is based on a univariate time series forecasting problem, but you can adapt it for
the specifics of your problem, e.g. use VAR/VARMA/etc. in the case of multivariate time
series forecasting. Slot in more of your favorite classical time series forecasting methods and
machine learning methods as you see fit. Order here is important and is structured in increasing
complexity from classical to modern methods. Early approaches are simple and give good results
fast; later approaches are slower and more complex, but also have a higher bar to clear to be
skillful.

The resulting model skill can be used in a ratchet. For example, the skill of the best
persistence configuration provide a baseline skill that all other models must outperform. If an
autoregression model does better than persistence, it becomes the new level to outperform in
order for a method to be considered skillful. Ideally, you want to exhaust each level before
moving on to the next. E.g. get the most out of Autoregression methods and use the results
as a new baseline to define skillful before moving on to Exponential Smoothing methods. The
more time and resources that you have, the more configurations that you can evaluate. For
example, with more time and resources, you could:
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� Search model configurations at a finer resolution around a configuration known to already
perform well.

� Search more model hyperparameter configurations.

� Use analysis to set better bounds on model hyperparameters to be searched.

� Use domain knowledge to better prepare data or engineer input features.

� Explore different potentially more complex methods.

� Explore ensembles of well performing base models.

I also encourage you to include data preparation schemes as hyperparameters for model
runs. Some methods will perform some basic data preparation, such as differencing in ARIMA,
nevertheless, it is often unclear exactly what data preparation schemes or combinations of
schemes are required to best present a dataset to a modeling algorithm. Rather than guess, grid
search and decide based on real results. Some data preparation schemes to consider include:

� Differencing to remove a trend.

� Seasonal differencing to remove seasonality.

� Standardize to center.

� Normalize to rescale.

� Power Transform to make normal.

This large amount of systematic searching can be slow to execute. Some ideas to speed up
the evaluation of models include:

� Use multiple machines in parallel via cloud hardware (such as Amazon EC2).

� Reduce the size of the train or test dataset to make the evaluation process faster.

� Use a more coarse grid of hyperparameters and circle back if you have time later.

� Perhaps do not refit a model for each step in walk-forward validation.

3.7 Step 4: Finalize Model

At the end of the previous time step, you know whether your time series is predictable. If it
is predictable, you will have a list of the top 5 to 10 candidate models that are skillful on the
problem. You can pick one or multiple models and finalize them. This involves training a new
final model on all available historical data (train and test). The model is ready for use; for
example:

� Make a prediction for the future.

� Save the model to file for later use in making predictions.
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� Incorporate the model into software for making predictions.

If you have time, you can always circle back to the previous step and see if you can further
improve upon the final model. This may be required periodically if the data changes significantly
over time.

3.8 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Metrics. List 3 or more metrics that you could use to evaluate the performance of
evaluated time series forecasting models.

� Modeling Algorithms. Pick a standard time series forecasting dataset and list 3 or
more algorithms that you could evaluate for each level in the Test Models section of the
framework.

� Framework Automation. Design a framework that could use that automates one part
or multiple parts of this process.

If you explore any of these extensions, I’d love to know.

3.9 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Forecasting: principles and practice, 2013.
http://amzn.to/2lln93c

� Practical Time Series Forecasting with R: A Hands-On Guide, 2016.
http://amzn.to/2k3QpuV

� Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194889

3.10 Summary

In this tutorial, you discovered a systematic process that you can use to quickly discover a
skillful predictive model for your time series forecasting problem. Specifically, you learned:

� A systematic four-step process that you can use to work through any time series forecasting
problem.

� An list of models to evaluate and the order in which to evaluate them.

� A methodology that allows the choice of a final model to be defensible with empirical
evidence, rather than whim or fashion.

http://amzn.to/2lln93c
http://amzn.to/2k3QpuV
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194889
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3.10.1 Next

In the next lesson, you will discover why and how to transform a time series dataset into samples
for training a supervised learning model.



Chapter 4

How to Transform Time Series to a
Supervised Learning Problem

Time series forecasting can be framed as a supervised learning problem. This re-framing of your
time series data allows you access to the suite of standard linear and nonlinear machine learning
algorithms on your problem. In this lesson, you will discover how you can re-frame your time
series problem as a supervised learning problem for machine learning. After reading this lesson,
you will know:

� What supervised learning is and how it is the foundation for all predictive modeling
machine learning algorithms.

� The sliding window method for framing a time series dataset and how to use it.

� How to use the sliding window for multivariate data and multi-step forecasting.

Let’s get started.

4.1 Supervised Machine Learning

The majority of practical machine learning uses supervised learning. Supervised learning is
where you have input variables (X) and an output variable (y) and you use an algorithm to
learn the mapping function from the input to the output.

Y = f(X) (4.1)

The goal is to approximate the real underlying mapping so well that when you have new
input data (X), you can predict the output variables (y) for that data. Below is a contrived
example of a supervised learning dataset where each row is an observation comprised of one
input variable (X) and one output variable to be predicted (y).

X, y

5, 0.9

4, 0.8

5, 1.0

3, 0.7

4, 0.9

24
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Listing 4.1: Example of a small contrived supervised learning dataset.

It is called supervised learning because the process of an algorithm learning from the training
dataset can be thought of as a teacher supervising the learning process. We know the correct
answers; the algorithm iteratively makes predictions on the training data and is corrected by
making updates. Learning stops when the algorithm achieves an acceptable level of performance.
Supervised learning problems can be further grouped into regression and classification problems.

� Classification: A classification problem is when the output variable is a category, such
as red and blue or disease and no disease.

� Regression: A regression problem is when the output variable is a real value, such as
dollars or weight. The contrived example above is a regression problem.

4.2 Sliding Window

Time series data can be phrased as supervised learning. Given a sequence of numbers for a time
series dataset, we can restructure the data to look like a supervised learning problem. We can
do this by using previous time steps as input variables and use the next time step as the output
variable. Let’s make this concrete with an example. Imagine we have a time series as follows:

time, measure

1, 100

2, 110

3, 108

4, 115

5, 120

Listing 4.2: Example of a small contrived time series dataset.

We can restructure this time series dataset as a supervised learning problem by using the
value at the previous time step to predict the value at the next time step. Re-organizing the
time series dataset this way, the data would look as follows:

X, y

?, 100

100, 110

110, 108

108, 115

115, 120

120, ?

Listing 4.3: Example of time series dataset as supervised learning.

Take a look at the above transformed dataset and compare it to the original time series.
Here are some observations:

� We can see that the previous time step is the input (X) and the next time step is the
output (y) in our supervised learning problem.

� We can see that the order between the observations is preserved, and must continue to be
preserved when using this dataset to train a supervised model.
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� We can see that we have no previous value that we can use to predict the first value in
the sequence. We will delete this row as we cannot use it.

� We can also see that we do not have a known next value to predict for the last value in
the sequence. We may want to delete this value while training our supervised model also.

The use of prior time steps to predict the next time step is called the sliding window method.
For short, it may be called the window method in some literature. In statistics and time series
analysis, this is called a lag or lag method. The number of previous time steps is called the
window width or size of the lag. This sliding window is the basis for how we can turn any time
series dataset into a supervised learning problem. From this simple example, we can notice a
few things:

� We can see how this can work to turn a time series into either a regression or a classification
supervised learning problem for real-valued or labeled time series values.

� We can see how once a time series dataset is prepared this way that any of the standard
linear and nonlinear machine learning algorithms may be applied, as long as the order of
the rows is preserved.

� We can see how the width sliding window can be increased to include more previous time
steps.

� We can see how the sliding window approach can be used on a time series that has more
than one value, or so-called multivariate time series.

We will explore some of these uses of the sliding window, starting next with using it to
handle time series with more than one observation at each time step, called multivariate time
series.

4.3 Sliding Window With Multiple Variates

The number of observations recorded for a given time in a time series dataset matters. Tradi-
tionally, different names are used:

� Univariate Time Series: These are datasets where only a single variable is observed
at each time, such as temperature each hour. The example in the previous section is a
univariate time series dataset.

� Multivariate Time Series: These are datasets where two or more variables are observed
at each time.

Most time series analysis methods, and even books on the topic, focus on univariate data.
This is because it is the simplest to understand and work with. Multivariate data is often more
difficult to work with. It is harder to model and often many of the classical methods do not
perform well.

Multivariate time series analysis considers simultaneously multiple time series. [...]
It is, in general, much more complicated than univariate time series analysis
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— Page 1, Multivariate Time Series Analysis: With R and Financial Applications, 2013.

The sweet spot for using machine learning for time series is where classical methods fall
down. This may be with complex univariate time series, and is more likely with multivariate
time series given the additional complexity. Below is another worked example to make the
sliding window method concrete for multivariate time series. Assume we have the contrived
multivariate time series dataset below with two observations at each time step. Let’s also assume
that we are only concerned with predicting measure2.

time, measure1, measure2

1, 0.2, 88

2, 0.5, 89

3, 0.7, 87

4, 0.4, 88

5, 1.0, 90

Listing 4.4: Example of a small contrived multivariate time series dataset.

We can re-frame this time series dataset as a supervised learning problem with a window
width of one. This means that we will use the previous time step values of measure1 and
measure2. We will also have available the next time step value for measure1. We will then
predict the next time step value of measure2. This will give us 3 input features and one output
value to predict for each training pattern.

X1, X2, X3, y

?, ?, 0.2, 88

0.2, 88, 0.5, 89

0.5, 89, 0.7, 87

0.7, 87, 0.4, 88

0.4, 88, 1.0, 90

1.0, 90, ?, ?

Listing 4.5: Example of a multivariate time series dataset as a supervised learning problem.

We can see that as in the univariate time series example above, we may need to remove the
first and last rows in order to train our supervised learning model. This example raises the
question of what if we wanted to predict both measure1 and measure2 for the next time step?
The sliding window approach can also be used in this case. Using the same time series dataset
above, we can phrase it as a supervised learning problem where we predict both measure1 and
measure2 with the same window width of one, as follows.

X1, X2, y1, y2

?, ?, 0.2, 88

0.2, 88, 0.5, 89

0.5, 89, 0.7, 87

0.7, 87, 0.4, 88

0.4, 88, 1.0, 90

1.0, 90, ?, ?

Listing 4.6: Example of a multivariate time series dataset as a multi-step or sequence prediction
supervised learning problem.

Not many supervised learning methods can handle the prediction of multiple output values
without modification, but some methods, like artificial neural networks, have little trouble. We
can think of predicting more than one value as predicting a sequence. In this case, we were
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predicting two different output variables, but we may want to predict multiple time steps ahead
of one output variable. This is called multi-step forecasting and is covered in the next section.

4.4 Sliding Window With Multiple Steps

The number of time steps ahead to be forecasted is important. Again, it is traditional to use
different names for the problem depending on the number of time steps to forecast:

� One-step Forecast: This is where the next time step (t+1) is predicted.

� Multi-step Forecast: This is where two or more future time steps are to be predicted.

All of the examples we have looked at so far have been one-step forecasts. There are a
number of ways to model multi-step forecasting as a supervised learning problem. For now,
we are focusing on framing multi-step forecast using the sliding window method. Consider the
same univariate time series dataset from the first sliding window example above:

time, measure

1, 100

2, 110

3, 108

4, 115

5, 120

Listing 4.7: Example of a small contrived time series dataset.

We can frame this time series as a two-step forecasting dataset for supervised learning with
a window width of one, as follows:

X1, y1, y2

? 100, 110

100, 110, 108

110, 108, 115

108, 115, 120

115, 120, ?

120, ?, ?

Listing 4.8: Example of a univariate time series dataset as a multi-step or sequence prediction
supervised learning problem.

We can see that the first row and the last two rows cannot be used to train a supervised
model. It is also a good example to show the burden on the input variables. Specifically, that
a supervised model only has X1 to work with in order to predict both y1 and y2. Careful
thought and experimentation are needed on your problem to find a window width that results
in acceptable model performance.

4.5 Implementing Data Preparation

In Chapter 6 we touch on data preparation an focus on how to transform time series data in
order to meet the expectations of a three-dimensional structure by some deep learning methods.
In Chapters 7, 8, and 9 we will explore how to implement deep learning methods for univariate,
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multivariate and multi-step forecasting with a specific focus on how to prepare the data for
model. In each chapter we will develop functions that can be reused to prepare time series data
on future projects.

4.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Samples in Detail. Explain how the choice of the number of time steps in a sample
impacts training a model and making predictions with a trained model.

� Work Through Dataset. Select a standard time series forecasting dataset and demon-
strate how it may be transformed into samples for supervised learning.

� Develop Function. Develop a function in Python to transform a time series into a
samples for supervised learning.

If you explore any of these extensions, I’d love to know.

4.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Multivariate Time Series Analysis: With R and Financial Applications, 2013.
https://amzn.to/2KD4rw7

� Machine Learning for Sequential Data: A Review, 2002.
https://link.springer.com/chapter/10.1007/3-540-70659-3_2

� Machine Learning Strategies for Time Series Forecasting, 2013.
https://link.springer.com/chapter/10.1007/978-3-642-36318-4_3

4.8 Summary

In this lesson, you discovered how you can re-frame your time series prediction problem as a
supervised learning problem for use with machine learning methods. Specifically, you learned:

� Supervised learning is the most popular way of framing problems for machine learning as
a collection of observations with inputs and outputs.

� Sliding window is the way to restructure a time series dataset as a supervised learning
problem.

� Multivariate and multi-step forecasting time series can also be framed as supervised
learning using the sliding window method.

4.8.1 Next

In the next lesson, you will discover naive and classical time series forecasting methods that you
absolutely must evaluate before investigating more sophisticated deep learning methods.

https://amzn.to/2KD4rw7
https://link.springer.com/chapter/10.1007/3-540-70659-3_2
https://link.springer.com/chapter/10.1007/978-3-642-36318-4_3


Chapter 5

Review of Simple and Classical
Forecasting Methods

Machine learning and deep learning methods can achieve impressive results on challenging time
series forecasting problems. Nevertheless, there are many forecasting problems where classical
methods such as SARIMA and exponential smoothing readily outperform more sophisticated
methods. Therefore, it is important to both understand how classical time series forecasting
methods work and to evaluate them prior to exploring more advanced methods. In this tutorial,
you will discover naive and classical methods for time series forecasting.

� How to develop simple forecasts for time series forecasting problems that provide a baseline
for estimating model skill.

� How to develop autoregressive models for time series forecasting.

� How to develop exponential smoothing methods for time series forecasting.

Let’s get started.

5.1 Simple Forecasting Methods

Establishing a baseline is essential on any time series forecasting problem. A baseline in
performance gives you an idea of how well all other models will actually perform on your
problem. In this section, you will discover how to develop a simple forecasting methods that
you can use to calculate a baseline level of performance on your time series forecasting problem.

5.1.1 Forecast Performance Baseline

A baseline in forecast performance provides a point of comparison. It is a point of reference for
all other modeling techniques on your problem. If a model achieves performance at or below the
baseline, the technique should be fixed or abandoned. The technique used to generate a forecast
to calculate the baseline performance must be easy to implement and naive of problem-specific
details. The goal is to get a baseline performance on your time series forecast problem as quickly
as possible so that you can get to work better understanding the dataset and developing more
advanced models. Three properties of a good technique for making a naive forecast are:

30
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� Simple: A method that requires little or no training or intelligence.

� Fast: A method that is fast to implement and computationally trivial to make a prediction.

� Repeatable: A method that is deterministic, meaning that it produces an expected
output given the same input.

5.1.2 Forecast Strategies

Simple forecast strategies are those that assume little or nothing about the nature of the forecast
problem and are fast to implement and calculate. If a model can perform better than the
performance of a simple forecast strategy, then it can be said to be skillful. There are two main
themes to simple forecast strategies; they are:

� Naive, or using observations values directly.

� Average, or using a statistic calculated on previous observations.

Let’s take a closer look at both of these strategies.

5.1.3 Naive Forecasting Strategy

A naive forecast involves using the previous observation directly as the forecast without any
change. It is often called the persistence forecast as the prior observation is persisted. This
simple approach can be adjusted slightly for seasonal data. In this case, the observation at the
same time in the previous cycle may be persisted instead. This can be further generalized to
testing each possible offset into the historical data that could be used to persist a value for a
forecast. For example, given the series:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Listing 5.1: Example of a univariate time series.

We could persist the last observation (relative index -1) as the value 9 or persist the second
last prior observation (relative index -2) as 8, and so on.

5.1.4 Average Forecast Strategy

One step above the naive forecast is the strategy of averaging prior values. All prior observations
are collected and averaged, either using the mean or the median, with no other treatment to
the data. In some cases, we may want to shorten the history used in the average calculation
to the last few observations. We can generalize this to the case of testing each possible set of
n-prior observations to be included into the average calculation. For example, given the series:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Listing 5.2: Example of a univariate time series.

We could average the last one observation (9), the last two observations (8, 9), and so on.
In the case of seasonal data, we may want to average the last n-prior observations at the same
time in the cycle as the time that is being forecasted. For example, given the series with a
3-step cycle:
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[1, 2, 3, 1, 2, 3, 1, 2, 3]

Listing 5.3: Example of a univariate time series with seasonal structure.

We could use a window size of 3 and average the last one observation (-3 or 1), the last two
observations (-3 or 1, and -(3 × 2) or 1), and so on.

5.1.5 Implementing Simple Strategies

In Chapter 11 we will explore how to implement the naive and the average forecast strategy and
how to grid search the hyperparameters of these strategies for univariate time series forecasting
datasets. The results from these strategies provide the baseline by which the performance of
more sophisticated models may be judged skillful, or not. In Chapter 17 we will explore how to
develop domain-specific naive forecast strategies for making multi-step forecasts for predicting
household electricity usage.

5.2 Autoregressive Methods

Autoregressive Integrated Moving Average, or ARIMA, is one of the most widely used forecasting
methods for univariate time series data forecasting. Although the method can handle data
with a trend, it does not support time series with a seasonal component. An extension to
ARIMA that supports the direct modeling of the seasonal component of the series is called
SARIMA. In this section, you will discover the Seasonal Autoregressive Integrated Moving
Average, or SARIMA, method for time series forecasting with univariate data containing trends
and seasonality.

5.2.1 Autoregressive Integrated Moving Average Model

An ARIMA model is a class of statistical models for analyzing and forecasting time series data.
It explicitly caters to a suite of standard structures in time series data, and as such provides a
simple yet powerful method for making skillful time series forecasts. ARIMA is an acronym
that stands for AutoRegressive Integrated Moving Average. It is a generalization of the simpler
AutoRegressive Moving Average or ARMA and adds the notion of integration. This acronym is
descriptive, capturing the key aspects of the model itself. Briefly, they are:

� AR: Autoregression. A model that uses the dependent relationship between an observation
and some number of lagged observations.

� I: Integrated. The use of differencing of raw observations (e.g. subtracting an observation
from an observation at the previous time step) in order to make the time series stationary.

� MA: Moving Average. A model that uses the dependency between an observation and a
residual error from a moving average model applied to lagged observations.

Each of these components are explicitly specified in the model as a parameter. A standard
notation is used of ARIMA(p,d,q) where the parameters are substituted with integer values to
quickly indicate the specific ARIMA model being used. A problem with ARIMA is that it does
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not support seasonal data. That is a time series with a repeating cycle. ARIMA expects data
that is either not seasonal or has the seasonal component removed, e.g. seasonally adjusted via
methods such as seasonal differencing.

A linear regression model is constructed including the specified number and type of terms,
and the data is prepared by a degree of differencing in order to make it stationary, i.e. to
remove trend and seasonal structures that negatively affect the regression model. A value of
0 can be used for a parameter, which indicates to not use that element of the model. This
way, the ARIMA model can be configured to perform the function of an ARMA model, and
even a simple AR, I, or MA model. Adopting an ARIMA model for a time series assumes that
the underlying process that generated the observations is an ARIMA process. This may seem
obvious, but helps to motivate the need to confirm the assumptions of the model in the raw
observations and in the residual errors of forecasts from the model.

5.2.2 What is Seasonal ARIMA

Seasonal Autoregressive Integrated Moving Average, SARIMA or Seasonal ARIMA, is an
extension of ARIMA that explicitly supports univariate time series data with a seasonal
component. It adds three new hyperparameters to specify the autoregression (AR), differencing
(I) and moving average (MA) for the seasonal component of the series, as well as an additional
parameter for the period of the seasonality.

A seasonal ARIMA model is formed by including additional seasonal terms in the
ARIMA [...] The seasonal part of the model consists of terms that are very similar
to the non-seasonal components of the model, but they involve backshifts of the
seasonal period.

— Page 242, Forecasting: Principles and Practice, 2013.

5.2.3 How to Configure SARIMA

Configuring a SARIMA requires selecting hyperparameters for both the trend and seasonal
elements of the series.

Trend Elements

There are three trend elements that require configuration. They are the same as the ARIMA
model; specifically:

� p: Trend autoregression order.

� d: Trend difference order.

� q: Trend moving average order.



5.2. Autoregressive Methods 34

Seasonal Elements

There are four seasonal elements that are not part of ARIMA that must be configured; they are:

� P: Seasonal autoregressive order.

� D: Seasonal difference order.

� Q: Seasonal moving average order.

� m: The number of time steps for a single seasonal period.

Together, the notation for an SARIMA model is specified as: SARIMA(p,d,q)(P,D,Q)m.
Where the specifically chosen hyperparameters for a model are specified. Importantly, the
m parameter influences the P , D, and Q parameters. For example, an m of 12 for monthly
data suggests a yearly seasonal cycle. A P = 1 would make use of the first seasonally offset
observation in the model, e.g. t− (m× 1) or t− 12. A P = 2, would use the last two seasonally
offset observations t− (m× 1), t− (m× 2). Similarly, a D of 1 would calculate a first order
seasonal difference and a Q = 1 would use a first order errors in the model (e.g. moving average).

A seasonal ARIMA model uses differencing at a lag equal to the number of seasons
(s) to remove additive seasonal effects. As with lag 1 differencing to remove a trend,
the lag s differencing introduces a moving average term. The seasonal ARIMA model
includes autoregressive and moving average terms at lag s

— Page 142, Introductory Time Series with R, 2009.

The trend elements can be chosen through careful analysis of ACF and PACF plots looking
at the correlations of recent time steps (e.g. 1, 2, 3). Similarly, ACF and PACF plots can be
analyzed to specify values for the seasonal model by looking at correlation at seasonal lag time
steps.

Seasonal ARIMA models can potentially have a large number of parameters and
combinations of terms. Therefore, it is appropriate to try out a wide range of models
when fitting to data and choose a best fitting model using an appropriate criterion ...

— Pages 143-144, Introductory Time Series with R, 2009.

Alternately, a grid search can be used across the trend and seasonal hyperparameters.

5.2.4 Implementing ARIMA and SARIMA Models

In Chapter 13 we will look at how to develop a reusable framework for automatically grid
searching the hyperparameters for the SARIMA model on a range of standard univariate time
series forecasting problems. In Chapter 18 we will analyze ACF and PACF plots of a real-world
household electricity usage dataset and develop an ARIMA to make multi-step time series
forecasts.
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5.3 Exponential Smoothing Methods

Exponential smoothing is a time series forecasting method for univariate data that can be
extended to support data with a systematic trend or seasonal component. It is a powerful
forecasting method that may be used as an alternative to the popular Box-Jenkins ARIMA
family of methods. In this section, you will discover the exponential smoothing method for
univariate time series forecasting.

5.3.1 What Is Exponential Smoothing?

Exponential smoothing is a time series forecasting method for univariate data. Time series
methods like the Box-Jenkins ARIMA family of methods develop a model where the prediction
is a weighted linear sum of recent past observations or lags. Exponential smoothing forecasting
methods are similar in that a prediction is a weighted sum of past observations, but the model
explicitly uses an exponentially decreasing weight for past observations. Specifically, past
observations are weighted with a geometrically decreasing ratio.

Forecasts produced using exponential smoothing methods are weighted averages of
past observations, with the weights decaying exponentially as the observations get
older. In other words, the more recent the observation the higher the associated
weight.

— Page 171, Forecasting: Principles and Practice, 2013.

Exponential smoothing methods may be considered as peers and an alternative to the popular
Box-Jenkins ARIMA class of methods for time series forecasting. Collectively, the methods
are sometimes referred to as ETS models, referring to the explicit modeling of Error, Trend
and Seasonality. There are three main types of exponential smoothing time series forecasting
methods. A simple method that assumes no systematic structure, an extension that explicitly
handles trends, and the most advanced approach that add support for seasonality.

5.3.2 Single Exponential Smoothing

Single Exponential Smoothing, SES for short, also called Simple Exponential Smoothing, is a
time series forecasting method for univariate data without a trend or seasonality. It requires a
single parameter, called alpha (a or α), also called the smoothing factor or smoothing coefficient.
This parameter controls the rate at which the influence of the observations at prior time steps
decay exponentially. Alpha is often set to a value between 0 and 1. Large values mean that the
model pays attention mainly to the most recent past observations, whereas smaller values mean
more of the history is taken into account when making a prediction.

A value close to 1 indicates fast learning (that is, only the most recent values
influence the forecasts), whereas a value close to 0 indicates slow learning (past
observations have a large influence on forecasts).

— Page 89, Practical Time Series Forecasting with R, 2016.

Hyperparameters:

� Alpha (α): Smoothing factor for the level.
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5.3.3 Double Exponential Smoothing

Double Exponential Smoothing is an extension to Exponential Smoothing that explicitly adds
support for trends in the univariate time series. In addition to the alpha parameter for controlling
smoothing factor for the level, an additional smoothing factor is added to control the decay of
the influence of the change in trend called beta (b or β). The method supports trends that
change in different ways: an additive and a multiplicative, depending on whether the trend
is linear or exponential respectively. Double Exponential Smoothing with an additive trend
is classically referred to as Holt’s linear trend model, named for the developer of the method
Charles Holt.

� Additive Trend: Double Exponential Smoothing with a linear trend.

� Multiplicative Trend: Double Exponential Smoothing with an exponential trend.

For longer range (multi-step) forecasts, the trend may continue on unrealistically. As such,
it can be useful to dampen the trend over time. Dampening means reducing the size of the
trend over future time steps down to a straight line (no trend).

The forecasts generated by Holt’s linear method display a constant trend (increasing
or decreasing) indecently into the future. Even more extreme are the forecasts
generated by the exponential trend method [...] Motivated by this observation [...]
introduced a parameter that “dampens” the trend to a flat line some time in the
future.

— Page 183, Forecasting: Principles and Practice, 2013.

As with modeling the trend itself, we can use the same principles in dampening the trend,
specifically additively or multiplicatively for a linear or exponential dampening effect. A damping
coefficient Phi (p or φ) is used to control the rate of dampening.

� Additive Dampening: Dampen a trend linearly.

� Multiplicative Dampening: Dampen the trend exponentially.

Hyperparameters:

� Alpha (α): Smoothing factor for the level.

� Beta (β): Smoothing factor for the trend.

� Trend Type: Additive or multiplicative.

� Dampen Type: Additive or multiplicative.

� Phi (φ): Damping coefficient.
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5.3.4 Triple Exponential Smoothing

Triple Exponential Smoothing is an extension of Exponential Smoothing that explicitly adds
support for seasonality to the univariate time series. This method is sometimes called Holt-
Winters Exponential Smoothing, named for two contributors to the method: Charles Holt and
Peter Winters. In addition to the alpha and beta smoothing factors, a new parameter is added
called gamma (g or γ) that controls the influence on the seasonal component. As with the trend,
the seasonality may be modeled as either an additive or multiplicative process for a linear or
exponential change in the seasonality.

� Additive Seasonality: Triple Exponential Smoothing with a linear seasonality.

� Multiplicative Seasonality: Triple Exponential Smoothing with an exponential season-
ality.

Triple exponential smoothing is the most advanced variation of exponential smoothing and
through configuration, it can also develop double and single exponential smoothing models.

Being an adaptive method, Holt-Winter’s exponential smoothing allows the level,
trend and seasonality patterns to change over time.

— Page 95, Practical Time Series Forecasting with R, 2016.

Additionally, to ensure that the seasonality is modeled correctly, the number of time steps
in a seasonal period (Period) must be specified. For example, if the series was monthly data
and the seasonal period repeated each year, then the Period=12. Hyperparameters:

� Alpha (α): Smoothing factor for the level.

� Beta (β): Smoothing factor for the trend.

� Trend Type: Additive or multiplicative.

� Dampen Type: Additive or multiplicative.

� Phi (φ): Damping coefficient.

� Gamma (γ): Smoothing factor for the seasonality.

� Seasonality Type: Additive or multiplicative.

� Period: Time steps in seasonal period.

5.3.5 How to Configure Exponential Smoothing

All of the model hyperparameters can be specified explicitly. This can be challenging for experts
and beginners alike. Instead, it is common to use numerical optimization to search for and fund
the smoothing coefficients (alpha, beta, gamma, and phi) for the model that result in the lowest
error.
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a more robust and objective way to obtain values for the unknown parameters
included in any exponential smoothing method is to estimate them from the observed
data. [...] the unknown parameters and the initial values for any exponential
smoothing method can be estimated by minimizing the SSE [sum of the squared
errors].

— Page 177, Forecasting: Principles and Practice, 2013.

The parameters that specify the type of change in the trend and seasonality, such as weather
they are additive or multiplicative and whether they should be dampened, must be specified
explicitly.

5.3.6 Implementing ETS Models

In Chapter 12 we will look at how to develop a reusable framework for automatically grid
searching the hyperparameters for the ETS model on a range of standard univariate time
series forecasting problems. You can adapt and reuse this framework on your own time series
forecasting problems going forward.

5.4 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Summarize Methods. Write a one line summary of naive, autoregressive and exponential
smoothing time series forecasting methods.

� Examples of Algorithms. List 3 examples of algorithms that may be used for each of
the naive, autoregressive and exponential smoothing time series forecasting methods.

� API Wrappers. Develop a reusable wrapper function for fitting and making predictions
with one time of classical time series forecasting method provided by the Statsmodels
library.

If you explore any of these extensions, I’d love to know.

5.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

5.5.1 Simple Methods

� Chapter 2, The forecaster’s toolbox, Forecasting: Principles and Practice, 2013.
https://amzn.to/2xlJsfV

� Forecasting, Wikipedia.
https://en.wikipedia.org/wiki/Forecasting

https://amzn.to/2xlJsfV
https://en.wikipedia.org/wiki/Forecasting
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5.5.2 Autoregressive Methods

� Chapter 8, ARIMA models, Forecasting: Principles and Practice, 2013.
https://amzn.to/2xlJsfV

� Chapter 7, Non-stationary Models, Introductory Time Series with R, 2009.
https://amzn.to/2smB9LR

� Autoregressive integrated moving average on Wikipedia.
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

5.5.3 Exponential Smoothing

� Chapter 7, Exponential smoothing, Forecasting: Principles and Practice, 2013.
https://amzn.to/2xlJsfV

� Section 6.4. Introduction to Time Series Analysis, Engineering Statistics Handbook, 2012.
https://www.itl.nist.gov/div898/handbook/

� Practical Time Series Forecasting with R, 2016.
https://amzn.to/2LGKzKm

� Exponential smoothing, Wikipedia.
https://en.wikipedia.org/wiki/Exponential_smoothing

5.6 Summary

In this tutorial, you discovered naive and classical methods for time series forecasting. Specifically,
you learned:

� How to develop simple forecasts for time series forecasting problems that provide a baseline
for estimating model skill.

� How to develop autoregressive models for time series forecasting.

� How to develop exponential smoothing methods for time series forecasting.

5.6.1 Next

This is the final lesson of this part, the next part will focus on how to develop deep learning
models for time series forecasting in general.

https://amzn.to/2xlJsfV
https://amzn.to/2smB9LR
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://amzn.to/2xlJsfV
https://www.itl.nist.gov/div898/handbook/
https://amzn.to/2LGKzKm
https://en.wikipedia.org/wiki/Exponential_smoothing
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Deep Learning Methods
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Overview

This part will show you exactly how to prepare data and develop MLP, CNN and LSTM
deep learning models for a range of different time series forecasting problems. The goal of the
modeling examples in these chapters is to provide templates that you can copy into your project
and start using immediately. As such, you may find some of the examples a little repetitive.
After reading the chapters in this part, you will know:

� How to transform time series data into the required three-dimensional structured expected
by Convolutional and Long Short-Term Memory Neural Networks, perhaps the most
confusing area for beginners (Chapter 6).

� How to develop Multilayer Perceptron models for univariate, multivariate and multi-step
time series forecasting problems (Chapter 7).

� How to develop Convolutional Neural Network models for univariate, multivariate and
multi-step time series forecasting problems (Chapter 8).

� How to develop Long Short-Term Memory Neural Network models for univariate, multi-
variate and multi-step time series forecasting problems (Chapter 9).
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Chapter 6

How to Prepare Time Series Data for
CNNs and LSTMs

Time series data must be transformed before it can be used to fit a supervised learning model.
In this form, the data can be used immediately to fit a supervised machine learning algorithm
and even a Multilayer Perceptron neural network. One further transformation is required in
order to ready the data for fitting a Convolutional Neural Network (CNN) or Long Short-Term
Memory (LSTM) Neural Network. Specifically, the two-dimensional structure of the supervised
learning data must be transformed to a three-dimensional structure. This is perhaps the largest
sticking point for practitioners looking to implement deep learning methods for time series
forecasting. In this tutorial, you will discover exactly how to transform a time series data set
into a three-dimensional structure ready for fitting a CNN or LSTM model. After completing
this tutorial, you will know:

� How to transform a time series dataset into a two-dimensional supervised learning format.

� How to transform a two-dimensional time series dataset into a three-dimensional structure
suitable for CNNs and LSTMs.

� How to step through a worked example of splitting a very long time series into subsequences
ready for training a CNN or LSTM model.

Let’s get started.

6.1 Overview

This tutorial is divided into four parts, they are:

1. Time Series to Supervised.

2. 3D Data Preparation Basics.

3. Univariate Worked Example.
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6.2 Time Series to Supervised

Time series data requires preparation before it can be used to train a supervised learning model,
such as an LSTM neural network. For example, a univariate time series is represented as a
vector of observations:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Listing 6.1: Example of a univariate time series.

A supervised learning algorithm requires that data is provided as a collection of samples,
where each sample has an input component (X) and an output component (y).

X, y

sample input, sample output

sample input, sample output

sample input, sample output

...

Listing 6.2: Example of a general supervised learning learning problem.

The model will learn how to map inputs to outputs from the provided examples.

y = f(X) (6.1)

A time series must be transformed into samples with input and output components. The
transform both informs what the model will learn and how you intend to use the model in
the future when making predictions, e.g. what is required to make a prediction (X) and what
prediction is made (y). For a univariate time series problem where we are interested in one-step
predictions, the observations at prior time steps, so-called lag observations, are used as input
and the output is the observation at the current time step. For example, the above 10-step
univariate series can be expressed as a supervised learning problem with three time steps for
input and one step as output, as follows:

X, y

[1, 2, 3], [4]

[2, 3, 4], [5]

[3, 4, 5], [6]

...

Listing 6.3: Example of a univariate time series converted to supervised learning.

For more on transforming your time series data into a supervised learning problem in general
see Chapter 4. You can write code to perform this transform yourself and that is the general
approach I teach and recommend for greater understanding of your data and control over the
transformation process. The split sequence() function below implements this behavior and
will split a given univariate sequence into multiple samples where each sample has a specified
number of time steps and the output is a single time step.

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps
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# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 6.4: Example of a function to split a univariate series into a supervised learning problem.

For specific examples for univariate, multivariate and multi-step time series, see Chapters 7,
8 and 9. After you have transformed your data into a form suitable for training a supervised
learning model it will be represented as rows and columns. Each column will represent a feature
to the model and may correspond to a separate lag observation. Each row will represent a
sample and will correspond to a new example with input and output components.

� Feature: A column in a dataset, such as a lag observation for a time series dataset.

� Sample: A row in a dataset, such as an input and output sequence for a time series
dataset.

For example, our univariate time series may look as follows:

x1, x2, x3, y

1, 2, 3, 4

2, 3, 4, 5

3, 4, 5, 6

...

Listing 6.5: Example of a univariate time series in terms of rows and columns.

The dataset will be represented in Python using a NumPy array. The array will have two
dimensions. The length of each dimension is referred to as the shape of the array. For example,
a time series with 3 inputs, 1 output will be transformed into a supervised learning problem
with 4 columns, or really 3 columns for the input data and 1 for the output data. If we have 7
rows and 3 columns for the input data then the shape of the dataset would be [7, 3], or 7
samples and 3 features. We can make this concrete by transforming our small contrived dataset.

# transform univariate time series to supervised learning problem

from numpy import array

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)
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return array(X), array(y)

# define univariate time series

series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

print(series.shape)

# transform to a supervised learning problem

X, y = split_sequence(series, 3)

print(X.shape, y.shape)

# show each sample

for i in range(len(X)):

print(X[i], y[i])

Listing 6.6: Example of transforming a univariate time series into a supervised learning problem.

Running the example first prints the shape of the time series, in this case 10 time steps
of observations. Next, the series is split into input and output components for a supervised
learning problem. We can see that for the chosen representation that we have 7 samples for the
input and output and 3 input features. The shape of the output is 7 samples represented as (7,)
indicating that the array is a single column. It could also be represented as a two-dimensional
array with 7 rows and 1 column [7, 1]. Finally , the input and output aspects of each sample
are printed, showing the expected breakdown of the problem.

(10,)

(7, 3) (7,)

[1 2 3] 4

[2 3 4] 5

[3 4 5] 6

[4 5 6] 7

[5 6 7] 8

[6 7 8] 9

[7 8 9] 10

Listing 6.7: Example output from transforming a univariate time series into a supervised learning
problem.

Data in this form can be used directly to train a simple neural network, such as a Multilayer
Perceptron. The difficulty for beginners comes when trying to prepare this data for CNNs and
LSTMs that require data to have a three-dimensional structure instead of the two-dimensional
structure described so far.

6.3 3D Data Preparation Basics

Preparing time series data for CNNs and LSTMs requires one additional step beyond transforming
the data into a supervised learning problem. This one additional step causes the most confusion
for beginners. In this section we will slowly step through the basics of how and why we need to
prepare three-dimensional data for CNNs and LSTMs before working through an example in
the next section.

The input layer for CNN and LSTM models is specified by the input shape argument on
the first hidden layer of the network. This too can make things confusing for beginners as
intuitively we may expect the first layer defined in the model be the input layer, not the first
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hidden layer. For example, below is an example of a network with one hidden LSTM layer and
one Dense output layer.

# lstm without an input layer

...

model = Sequential()

model.add(LSTM(32))

model.add(Dense(1))

Listing 6.8: Example of defining an LSTM model without an input layer.

In this example, the LSTM() layer must specify the shape of the input data. The input to
every CNN and LSTM layer must be three-dimensional. The three dimensions of this input are:

� Samples. One sequence is one sample. A batch is comprised of one or more samples.

� Time Steps. One time step is one point of observation in the sample. One sample is
comprised of multiple time steps.

� Features. One feature is one observation at a time step. One time step is comprised of
one or more features.

This expected three-dimensional structure of input data is often summarized using the array
shape notation of: [samples, timesteps, features]. Remember, that the two-dimensional
shape of a dataset that we are familiar with from the previous section has the array shape of:
[samples, features]. this means we are adding the new dimension of time steps. Except, in
time series forecasting problems our features are observations at time steps. So, really, we are
adding the dimension of features, where a univariate time series has only one feature.

When defining the input layer of your LSTM network, the network assumes you have one
or more samples and requires that you specify the number of time steps and the number of
features. You can do this by specifying a tuple to the input shape argument. For example, the
model below defines an input layer that expects 1 or more samples, 3 time steps, and 1 feature.
Remember, the first layer in the network is actually the first hidden layer, so in this example 32
refers to the number of units in the first hidden layer. The number of units in the first hidden
layer is completely unrelated to the number of samples, time steps or features in your input
data.

# lstm with an input layer

...

model = Sequential()

model.add(LSTM(32, input_shape=(3, 1)))

model.add(Dense(1))

Listing 6.9: Example of defining an LSTM model with an input layer.

This example maps onto our univariate time series from the previous section that we split into
having 3 input time steps and 1 feature. We may have loaded our time series dataset from CSV
or transformed it to a supervised learning problem in memory. It will have a two-dimensional
shape and we must convert it to a three-dimensional shape with some number of samples, 3
time steps per sample and 1 feature per time step, or [?, 3, 1]. We can do this by using the
reshape() NumPy function. For example, if we have 7 samples and 3 time steps per sample for
the input element of our time series, we can reshape it into [7, 3, 1] by providing a tuple to
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the reshape() function specifying the desired new shape of (7, 3, 1). The array must have
enough data to support the new shape, which in this case it does as [7, 3] and [7, 3, 1] are
functionally the same thing.

...

# transform input from [samples, features] to [samples, timesteps, features]

X = X.reshape((7, 3, 1))

Listing 6.10: Example of reshaping 2D data to be 3D.

A short-cut in reshaping the array is to use the known shapes, such as the number of samples
and the number of times steps from the array returned from the call to the X.shape property of
the array. For example, X.shape[0] refers to the number of rows in a 2D array, in this case the
number of samples and X.shape[1] refers to the number of columns in a 2D array, in this case
the number of feature that we will use as the number of time steps. The reshape can therefore
be written as:

...

# transform input from [samples, features] to [samples, timesteps, features]

X = X.reshape((X.shape[0], X.shape[1], 1))

Listing 6.11: Example of reshaping 2D data to be 3D.

We can make this concept concrete with a worked example. The complete code listing is
provided below.

# transform univariate 2d to 3d

from numpy import array

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define univariate time series

series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

print(series.shape)

# transform to a supervised learning problem

X, y = split_sequence(series, 3)

print(X.shape, y.shape)

# transform input from [samples, features] to [samples, timesteps, features]

X = X.reshape((X.shape[0], X.shape[1], 1))

print(X.shape)

Listing 6.12: Example of transforming a univariate time series into a three-dimensional array.
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Running the example first prints the shape of the univariate time series, in this case 10
time steps. It then summarizes the shape if the input (X) and output (y) elements of each
sample after the univariate series has been converted into a supervised learning problem, in
this case, the data has 7 samples and the input data has 3 features per sample, which we
know are actually time steps. Finally, the input element of each sample is reshaped to be
three-dimensional suitable for fitting an LSTM or CNN and now has the shape [7, 3, 1] or 7
samples, 3 time steps, 1 feature.

(10,)

(7, 3) (7,)

(7, 3, 1)

Listing 6.13: Example output from reshaping 2D data to be 3D.

6.4 Data Preparation Example

Consider that you are in the current situation:

I have two columns in my data file with 5,000 rows, column 1 is time (with 1 hour
interval) and column 2 is the number of sales and I am trying to forecast the number
of sales for future time steps. Help me to set the number of samples, time steps and
features in this data for an LSTM?

There are few problems here:

� Data Shape. LSTMs expect 3D input, and it can be challenging to get your head around
this the first time.

� Sequence Length. LSTMs don’t like sequences of more than 200-400 time steps, so the
data will need to be split into subsamples.

We will work through this example, broken down into the following 4 steps:

1. Load the Data

2. Drop the Time Column

3. Split Into Samples

4. Reshape Subsequences

6.4.1 Load the Data

We can load this dataset as a Pandas Series using the function read csv().

# load time series dataset

series = read_csv('filename.csv', header=0, index_col=0)

Listing 6.14: Example of loading a dataset as a Pandas DataFrame.
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For this example, we will mock loading by defining a new dataset in memory with 5,000
time steps.

# example of defining a dataset

from numpy import array

# define the dataset

data = list()

n = 5000

for i in range(n):

data.append([i+1, (i+1)*10])

data = array(data)

print(data[:5, :])

print(data.shape)

Listing 6.15: Example of defining the dataset instead of loading it.

Running this piece both prints the first 5 rows of data and the shape of the loaded data. We
can see we have 5,000 rows and 2 columns: a standard univariate time series dataset.

[[ 1 10]

[ 2 20]

[ 3 30]

[ 4 40]

[ 5 50]]

(5000, 2)

Listing 6.16: Example output from defining the dataset.

6.4.2 Drop the Time Column

If your time series data is uniform over time and there is no missing values, we can drop the
time column. If not, you may want to look at imputing the missing values, resampling the data
to a new time scale, or developing a model that can handle missing values. Here, we just drop
the first column:

# example of dropping the time dimension from the dataset

from numpy import array

# define the dataset

data = list()

n = 5000

for i in range(n):

data.append([i+1, (i+1)*10])

data = array(data)

# drop time

data = data[:, 1]

print(data.shape)

Listing 6.17: Example of dropping the time column.

Running the example prints the shape of the dataset after the time column has been removed.

(5000,)

Listing 6.18: Example output from dropping the time column.
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6.4.3 Split Into Samples

LSTMs need to process samples where each sample is a single sequence of observations. In this
case, 5,000 time steps is too long; LSTMs work better with 200-to-400 time steps. Therefore, we
need to split the 5,000 time steps into multiple shorter sub-sequences. There are many ways to
do this, and you may want to explore some depending on your problem. For example, perhaps
you need overlapping sequences, perhaps non-overlapping is good but your model needs state
across the sub-sequences and so on. In this example, we will split the 5,000 time steps into 25
sub-sequences of 200 time steps each. Rather than using NumPy or Python tricks, we will do
this the old fashioned way so you can see what is going on.

# example of splitting a univariate sequence into subsequences

from numpy import array

# define the dataset

data = list()

n = 5000

for i in range(n):

data.append([i+1, (i+1)*10])

data = array(data)

# drop time

data = data[:, 1]

# split into samples (e.g. 5000/200 = 25)

samples = list()

length = 200

# step over the 5,000 in jumps of 200

for i in range(0,n,length):

# grab from i to i + 200

sample = data[i:i+length]

samples.append(sample)

print(len(samples))

Listing 6.19: Example of splitting the series into samples.

We now have 25 subsequences of 200 time steps each.

25

Listing 6.20: Example output from splitting the series into samples.

6.4.4 Reshape Subsequences

The LSTM needs data with the format of [samples, timesteps, features]. We have 25
samples, 200 time steps per sample, and 1 feature. First, we need to convert our list of arrays
into a 2D NumPy array with the shape [25, 200].

# example of creating an array of subsequence

from numpy import array

# define the dataset

data = list()

n = 5000

for i in range(n):

data.append([i+1, (i+1)*10])

data = array(data)
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# drop time

data = data[:, 1]

# split into samples (e.g. 5000/200 = 25)

samples = list()

length = 200

# step over the 5,000 in jumps of 200

for i in range(0,n,length):

# grab from i to i + 200

sample = data[i:i+length]

samples.append(sample)

# convert list of arrays into 2d array

data = array(samples)

print(data.shape)

Listing 6.21: Example of printing the shape of the samples.

Running this piece, you should see that we have 25 rows and 200 columns. Interpreted in a
machine learning context, this dataset has 25 samples and 200 features per sample.

(25, 200)

Listing 6.22: Example output from printing the shape of the samples.

Next, we can use the reshape() function to add one additional dimension for our single
feature and use the existing columns as time steps instead.

# example of creating a 3d array of subsequences

from numpy import array

# define the dataset

data = list()

n = 5000

for i in range(n):

data.append([i+1, (i+1)*10])

data = array(data)

# drop time

data = data[:, 1]

# split into samples (e.g. 5000/200 = 25)

samples = list()

length = 200

# step over the 5,000 in jumps of 200

for i in range(0,n,length):

# grab from i to i + 200

sample = data[i:i+length]

samples.append(sample)

# convert list of arrays into 2d array

data = array(samples)

# reshape into [samples, timesteps, features]

data = data.reshape((len(samples), length, 1))

print(data.shape)

Listing 6.23: Example of reshaping the dataset into a 3D format.

And that is it. The data can now be used as an input (X) to an LSTM model, or even a
CNN model.

(25, 200, 1)
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Listing 6.24: Example output from reshaping the dataset into a 3D format.

6.5 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Explain Data Shape. Explain in your own words the meaning of samples, time steps
and features.

� Worked Example. Select a standard time series forecasting problem and manually
reshape it into a structure suitable for training a CNN or LSTM model.

� Develop Framework. Develop a function to automatically reshape a time series dataset
into samples and into a shape suitable for training a CNN or LSTM model.

If you explore any of these extensions, I’d love to know.

6.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� numpy.reshape API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

� Keras Recurrent Layers API in Keras.
https://keras.io/layers/recurrent/

� Keras Convolutional Layers API in Keras.
https://keras.io/layers/convolutional/

6.7 Summary

In this tutorial, you discovered exactly how to transform a time series data set into a three-
dimensional structure ready for fitting a CNN or LSTM model.

Specifically, you learned:

� How to transform a time series dataset into a two-dimensional supervised learning format.

� How to transform a two-dimensional time series dataset into a three-dimensional structure
suitable for CNNs and LSTMs.

� How to step through a worked example of splitting a very long time series into subsequences
ready for training a CNN or LSTM model.

6.7.1 Next

In the next lesson, you will discover how to develop Multilayer Perceptron models for time series
forecasting.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://keras.io/layers/recurrent/
https://keras.io/layers/convolutional/


Chapter 7

How to Develop MLPs for Time Series
Forecasting

Multilayer Perceptrons, or MLPs for short, can be applied to time series forecasting. A challenge
with using MLPs for time series forecasting is in the preparation of the data. Specifically, lag
observations must be flattened into feature vectors. In this tutorial, you will discover how to
develop a suite of MLP models for a range of standard time series forecasting problems. The
objective of this tutorial is to provide standalone examples of each model on each type of time
series problem as a template that you can copy and adapt for your specific time series forecasting
problem. In this tutorial, you will discover how to develop a suite of Multilayer Perceptron
models for a range of standard time series forecasting problems. After completing this tutorial,
you will know:

� How to develop MLP models for univariate time series forecasting.

� How to develop MLP models for multivariate time series forecasting.

� How to develop MLP models for multi-step time series forecasting.

Let’s get started.

7.1 Tutorial Overview

In this tutorial, we will explore how to develop a suite of MLP models for time series forecasting.
The models are demonstrated on small contrived time series problems intended to give the flavor
of the type of time series problem being addressed. The chosen configuration of the models is
arbitrary and not optimized for each problem; that was not the goal. This tutorial is divided
into four parts; they are:

1. Univariate MLP Models

2. Multivariate MLP Models

3. Multi-step MLP Models

4. Multivariate Multi-step MLP Models
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Note: Traditionally, a lot of research has been invested into using MLPs for time series
forecasting with modest results. Perhaps the most promising area in the application of deep
learning methods to time series forecasting are in the use of CNNs, LSTMs and hybrid models.
As such, we will not see more examples of straight MLP models for time series forecasting
beyond this tutorial.

7.2 Univariate MLP Models

Multilayer Perceptrons, or MLPs for short, can be used to model univariate time series forecasting
problems. Univariate time series are a dataset comprised of a single series of observations with
a temporal ordering and a model is required to learn from the series of past observations to
predict the next value in the sequence. This section is divided into two parts; they are:

1. Data Preparation

2. MLP Model

7.2.1 Data Preparation

Before a univariate series can be modeled, it must be prepared. The MLP model will learn a
function that maps a sequence of past observations as input to an output observation. As such,
the sequence of observations must be transformed into multiple examples from which the model
can learn. Consider a given univariate sequence:

[10, 20, 30, 40, 50, 60, 70, 80, 90]

Listing 7.1: Example of a univariate time series.

We can divide the sequence into multiple input/output patterns called samples, where three
time steps are used as input and one time step is used as output for the one-step prediction
that is being learned.

X, y

10, 20, 30, 40

20, 30, 40, 50

30, 40, 50, 60

...

Listing 7.2: Example of a univariate time series as a supervised learning problem.

The split sequence() function below implements this behavior and will split a given
univariate sequence into multiple samples where each sample has a specified number of time
steps and the output is a single time step.

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:
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break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 7.3: Example of a function to split a univariate series into a supervised learning problem.

We can demonstrate this function on our small contrived dataset above. The complete
example is listed below.

# univariate data preparation

from numpy import array

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 7.4: Example of transforming a univariate time series into a supervised learning problem.

Running the example splits the univariate series into six samples where each sample has
three input time steps and one output time step.

[10 20 30] 40

[20 30 40] 50

[30 40 50] 60

[40 50 60] 70

[50 60 70] 80

[60 70 80] 90

Listing 7.5: Example output from transforming a univariate time series into a supervised learning
problem.

Now that we know how to prepare a univariate series for modeling, let’s look at developing
an MLP model that can learn the mapping of inputs to outputs.
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7.2.2 MLP Model

A simple MLP model has a single hidden layer of nodes, and an output layer used to make a
prediction. We can define an MLP for univariate time series forecasting as follows.

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_steps))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Listing 7.6: Example of defining an MLP model.

Important in the definition is the shape of the input; that is what the model expects as
input for each sample in terms of the number of time steps. The number of time steps as input
is the number we chose when preparing our dataset as an argument to the split sequence()

function. The input dimension for each sample is specified in the input dim argument on the
definition of first hidden layer. Technically, the model will view each time step as a separate
feature instead of separate time steps.

We almost always have multiple samples, therefore, the model will expect the input
component of training data to have the dimensions or shape: [samples, features]. Our
split sequence() function in the previous section outputs the X with the shape [samples,

features] ready to use for modeling. The model is fit using the efficient Adam version of
stochastic gradient descent and optimized using the mean squared error, or ‘mse’, loss function.
Once the model is defined, we can fit it on the training dataset.

# fit model

model.fit(X, y, epochs=2000, verbose=0)

Listing 7.7: Example of fitting an MLP model.

After the model is fit, we can use it to make a prediction. We can predict the next value
in the sequence by providing the input: [70, 80, 90]. And expecting the model to predict
something like: [100]. The model expects the input shape to be two-dimensional with [samples,

features], therefore, we must reshape the single input sample before making the prediction,
e.g with the shape [1, 3] for 1 sample and 3 time steps used as input features.

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps))

yhat = model.predict(x_input, verbose=0)

Listing 7.8: Example of reshaping a single sample for making a prediction.

We can tie all of this together and demonstrate how to develop an MLP for univariate time
series forecasting and make a single prediction.

# univariate mlp example

from numpy import array

from keras.models import Sequential

from keras.layers import Dense

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()
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for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_steps))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 7.9: Example of demonstrating an MLP for univariate time series forecasting.

Running the example prepares the data, fits the model, and makes a prediction. We can see
that the model predicts the next value in the sequence.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[100.0109]]

Listing 7.10: Example output from demonstrating an MLP for univariate time series forecasting.

For an example of an MLP applied to a real-world univariate time series forecasting problem
see Chapter 14. For an example of grid searching MLP hyperparameters on a univariate time
series forecasting problem, see Chapter 15.

7.3 Multivariate MLP Models

Multivariate time series data means data where there is more than one observation for each
time step. There are two main models that we may require with multivariate time series data;
they are:
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1. Multiple Input Series.

2. Multiple Parallel Series.

Let’s take a look at each in turn.

7.3.1 Multiple Input Series

A problem may have two or more parallel input time series and an output time series that is
dependent on the input time series. The input time series are parallel because each series has
an observation at the same time step. We can demonstrate this with a simple example of two
parallel input time series where the output series is the simple addition of the input series.

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

Listing 7.11: Example of defining a parallel time series.

We can reshape these three arrays of data as a single dataset where each row is a time step
and each column is a separate time series. This is a standard way of storing parallel time series
in a CSV file.

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

Listing 7.12: Example of horizontally stacking parallel series into a dataset.

The complete example is listed below.

# multivariate data preparation

from numpy import array

from numpy import hstack

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

print(dataset)

Listing 7.13: Example of parallel dependent time series.

Running the example prints the dataset with one row per time step and one column for each
of the two input and one output parallel time series.
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[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 7.14: Example output from parallel dependent time series.

As with the univariate time series, we must structure these data into samples with input and
output samples. We need to split the data into samples maintaining the order of observations
across the two input sequences. If we chose three input time steps, then the first sample would
look as follows:

Input:

10, 15

20, 25

30, 35

Listing 7.15: Example input data for the first data sample.

Output:

65

Listing 7.16: Example output data for the first data sample.

That is, the first three time steps of each parallel series are provided as input to the model
and the model associates this with the value in the output series at the third time step, in this
case 65. We can see that, in transforming the time series into input/output samples to train
the model, that we will have to discard some values from the output time series where we do
not have values in the input time series at prior time steps. In turn, the choice of the size of
the number of input time steps will have an important effect on how much of the training data
is used. We can define a function named split sequences() that will take a dataset as we
have defined it with rows for time steps and columns for parallel series and return input/output
samples.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)
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Listing 7.17: Example of a function for separating parallel time series into a supervised learning
problem.

We can test this function on our dataset using three time steps for each input time series as
input. The complete example is listed below.

# multivariate data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 7.18: Example of transforming a parallel dependent time series into a supervised learning
problem.

Running the example first prints the shape of the X and y components. We can see that the
X component has a three-dimensional structure. The first dimension is the number of samples,
in this case 7. The second dimension is the number of time steps per sample, in this case 3, the
value specified to the function. Finally, the last dimension specifies the number of parallel time
series or the number of variables, in this case 2 for the two parallel series. We can then see that
the input and output for each sample is printed, showing the three time steps for each of the
two input series and the associated output for each sample.
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(7, 3, 2) (7,)

[[10 15]

[20 25]

[30 35]] 65

[[20 25]

[30 35]

[40 45]] 85

[[30 35]

[40 45]

[50 55]] 105

[[40 45]

[50 55]

[60 65]] 125

[[50 55]

[60 65]

[70 75]] 145

[[60 65]

[70 75]

[80 85]] 165

[[70 75]

[80 85]

[90 95]] 185

Listing 7.19: Example output from transforming a parallel dependent time series into a supervised
learning problem.

MLP Model

Before we can fit an MLP on this data, we must flatten the shape of the input samples. MLPs
require that the shape of the input portion of each sample is a vector. With a multivariate input,
we will have multiple vectors, one for each time step. We can flatten the temporal structure of
each input sample, so that:

[[10 15]

[20 25]

[30 35]]

Listing 7.20: Example input data for the first data sample.

Becomes:

[10, 15, 20, 25, 30, 35]

Listing 7.21: Example of a flattened input data for the first data sample.

First, we can calculate the length of each input vector as the number of time steps multiplied
by the number of features or time series. We can then use this vector size to reshape the input.

# flatten input

n_input = X.shape[1] * X.shape[2]

X = X.reshape((X.shape[0], n_input))

Listing 7.22: Example of flattening input samples for the MLP.
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We can now define an MLP model for the multivariate input where the vector length is used
for the input dimension argument.

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Listing 7.23: Example of defining an MLP that expects a flattened multivariate time series as
input.

When making a prediction, the model expects three time steps for two input time series.
We can predict the next value in the output series proving the input values of:

80, 85

90, 95

100, 105

Listing 7.24: Example input sample for making a prediction beyond the end of the time series.

The shape of the 1 sample with 3 time steps and 2 variables would be [1, 3, 2]. We must
again reshape this to be 1 sample with a vector of 6 elements or [1, 6]. We would expect the
next value in the sequence to be 100 + 105 or 205.

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x_input = x_input.reshape((1, n_input))

yhat = model.predict(x_input, verbose=0)

Listing 7.25: Example of reshaping the input sample for making a prediction.

The complete example is listed below.

# multivariate mlp example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])
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out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# flatten input

n_input = X.shape[1] * X.shape[2]

X = X.reshape((X.shape[0], n_input))

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x_input = x_input.reshape((1, n_input))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 7.26: Example of using an MLP to forecast a dependent time series.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[205.04436]]

Listing 7.27: Example output from using an MLP to forecast a dependent time series.

Multi-headed MLP Model

There is another more elaborate way to model the problem. Each input series can be handled by
a separate MLP and the output of each of these submodels can be combined before a prediction
is made for the output sequence. We can refer to this as a multi-headed input MLP model. It
may offer more flexibility or better performance depending on the specifics of the problem that
are being modeled. This type of model can be defined in Keras using the Keras functional API.
First, we can define the first input model as an MLP with an input layer that expects vectors
with n steps features.

# first input model

visible1 = Input(shape=(n_steps,))

dense1 = Dense(100, activation='relu')(visible1)

Listing 7.28: Example of defining the first input model.
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We can define the second input submodel in the same way.

# second input model

visible2 = Input(shape=(n_steps,))

dense2 = Dense(100, activation='relu')(visible2)

Listing 7.29: Example of defining the second input model.

Now that both input submodels have been defined, we can merge the output from each
model into one long vector, which can be interpreted before making a prediction for the output
sequence.

# merge input models

merge = concatenate([dense1, dense2])

output = Dense(1)(merge)

Listing 7.30: Example of merging the two input models.

We can then tie the inputs and outputs together.

# connect input and output models

model = Model(inputs=[visible1, visible2], outputs=output)

Listing 7.31: Example of connecting the input and output elements together.

The image below provides a schematic for how this model looks, including the shape of the
inputs and outputs of each layer.

Figure 7.1: Plot of Multi-headed MLP for Multivariate Time Series Forecasting.

This model requires input to be provided as a list of two elements, where each element in
the list contains data for one of the submodels. In order to achieve this, we can split the 3D
input data into two separate arrays of input data: that is from one array with the shape [7, 3,

2] to two 2D arrays with the shape [7, 3].
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# separate input data

X1 = X[:, :, 0]

X2 = X[:, :, 1]

Listing 7.32: Example of separating input data for the two input models.

These data can then be provided in order to fit the model.

# fit model

model.fit([X1, X2], y, epochs=2000, verbose=0)

Listing 7.33: Example of fitting the multi-headed input model.

Similarly, we must prepare the data for a single sample as two separate two-dimensional
arrays when making a single one-step prediction.

# reshape one sample for making a forecast

x_input = array([[80, 85], [90, 95], [100, 105]])

x1 = x_input[:, 0].reshape((1, n_steps))

x2 = x_input[:, 1].reshape((1, n_steps))

Listing 7.34: Example of preparing an input sample for making a forecast.

We can tie all of this together; the complete example is listed below.

# multivariate mlp example

from numpy import array

from numpy import hstack

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers.merge import concatenate

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns
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dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# separate input data

X1 = X[:, :, 0]

X2 = X[:, :, 1]

# first input model

visible1 = Input(shape=(n_steps,))

dense1 = Dense(100, activation='relu')(visible1)

# second input model

visible2 = Input(shape=(n_steps,))

dense2 = Dense(100, activation='relu')(visible2)

# merge input models

merge = concatenate([dense1, dense2])

output = Dense(1)(merge)

model = Model(inputs=[visible1, visible2], outputs=output)

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit([X1, X2], y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x1 = x_input[:, 0].reshape((1, n_steps))

x2 = x_input[:, 1].reshape((1, n_steps))

yhat = model.predict([x1, x2], verbose=0)

print(yhat)

Listing 7.35: Example of using a Multi-headed MLP to forecast a dependent time series.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[206.05022]]

Listing 7.36: Example output from using a Multi-headed MLP to forecast a dependent time
series.

7.3.2 Multiple Parallel Series

An alternate time series problem is the case where there are multiple parallel time series and a
value must be predicted for each. For example, given the data from the previous section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]
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Listing 7.37: Example of a parallel time series problem.

We may want to predict the value for each of the three time series for the next time step. This
might be referred to as multivariate forecasting. Again, the data must be split into input/output
samples in order to train a model. The first sample of this dataset would be:

Input:

10, 15, 25

20, 25, 45

30, 35, 65

Listing 7.38: Example input from the first data sample.

Output:

40, 45, 85

Listing 7.39: Example output from the first data sample.

The split sequences() function below will split multiple parallel time series with rows for
time steps and one series per column into the required input/output shape.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 7.40: Example of a function for splitting a multivariate time series dataset into a
supervised learning problem.

We can demonstrate this on the contrived problem; the complete example is listed below.

# multivariate output data prep

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern
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seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 7.41: Example of splitting a multivariate time series into a supervised learning problem.

Running the example first prints the shape of the prepared X and y components. The
shape of X is three-dimensional, including the number of samples (6), the number of time steps
chosen per sample (3), and the number of parallel time series or features (3). The shape of y
is two-dimensional as we might expect for the number of samples (6) and the number of time
variables per sample to be predicted (3). Then, each of the samples is printed showing the input
and output components of each sample.

(6, 3, 3) (6, 3)

[[10 15 25]

[20 25 45]

[30 35 65]] [40 45 85]

[[20 25 45]

[30 35 65]

[40 45 85]] [ 50 55 105]

[[ 30 35 65]

[ 40 45 85]

[ 50 55 105]] [ 60 65 125]

[[ 40 45 85]

[ 50 55 105]

[ 60 65 125]] [ 70 75 145]

[[ 50 55 105]

[ 60 65 125]

[ 70 75 145]] [ 80 85 165]

[[ 60 65 125]

[ 70 75 145]

[ 80 85 165]] [ 90 95 185]

Listing 7.42: Example output from splitting a multivariate time series into a supervised learning
problem.
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Vector-Output MLP Model

We are now ready to fit an MLP model on this data. As with the previous case of multivariate
input, we must flatten the three dimensional structure of the input data samples to a two
dimensional structure of [samples, features], where lag observations are treated as features
by the model.

# flatten input

n_input = X.shape[1] * X.shape[2]

X = X.reshape((X.shape[0], n_input))

Listing 7.43: Example of flattening multivariate time series for input to a MLP.

The model output will be a vector, with one element for each of the three different time
series.

# determine the number of outputs

n_output = y.shape[1]

Listing 7.44: Example of defining the size of the vector to forecast.

We can now define our model, using the flattened vector length for the input layer and the
number of time series as the vector length when making a prediction.

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_input))

model.add(Dense(n_output))

model.compile(optimizer='adam', loss='mse')

Listing 7.45: Example of defining a MLP for multivariate forecasting.

We can predict the next value in each of the three parallel series by providing an input of
three time steps for each series.

70, 75, 145

80, 85, 165

90, 95, 185

Listing 7.46: Example input for making an out-of-sample forecast.

The shape of the input for making a single prediction must be 1 sample, 3 time steps and 3
features, or [1, 3, 3]. Again, we can flatten this to [1, 6] to meet the expectations of the
model. We would expect the vector output to be:

[100, 105, 205]

Listing 7.47: Example output for an out-of-sample forecast.

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_input))

yhat = model.predict(x_input, verbose=0)

Listing 7.48: Example of preparing data for making an out-of-sample forecast with a MLP.

We can tie all of this together and demonstrate an MLP for multivariate output time series
forecasting below.
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# multivariate output mlp example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# flatten input

n_input = X.shape[1] * X.shape[2]

X = X.reshape((X.shape[0], n_input))

n_output = y.shape[1]

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_input))

model.add(Dense(n_output))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_input))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 7.49: Example of an MLP for multivariate time series forecasting.

Running the example prepares the data, fits the model, and makes a prediction.
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Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[100.95039 107.541306 206.81033 ]]

Listing 7.50: Example output from an MLP for multivariate time series forecasting.

Multi-output MLP Model

As with multiple input series, there is another, more elaborate way to model the problem. Each
output series can be handled by a separate output MLP model. We can refer to this as a
multi-output MLP model. It may offer more flexibility or better performance depending on the
specifics of the problem that is being modeled. This type of model can be defined in Keras
using the Keras functional API. First, we can define the input model as an MLP with an input
layer that expects flattened feature vectors.

# define model

visible = Input(shape=(n_input,))

dense = Dense(100, activation='relu')(visible)

Listing 7.51: Example of defining an input model.

We can then define one output layer for each of the three series that we wish to forecast,
where each output submodel will forecast a single time step.

# define output 1

output1 = Dense(1)(dense)

# define output 2

output2 = Dense(1)(dense)

# define output 2

output3 = Dense(1)(dense)

Listing 7.52: Example of defining multiple output models.

We can then tie the input and output layers together into a single model.

# tie together

model = Model(inputs=visible, outputs=[output1, output2, output3])

model.compile(optimizer='adam', loss='mse')

Listing 7.53: Example of connecting input and output models.

To make the model architecture clear, the schematic below clearly shows the three separate
output layers of the model and the input and output shapes of each layer.

Figure 7.2: Plot of Multi-output MLP for Multivariate Time Series Forecasting.
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When training the model, it will require three separate output arrays per sample. We can
achieve this by converting the output training data that has the shape [7, 3] to three arrays
with the shape [7, 1].

# separate output

y1 = y[:, 0].reshape((y.shape[0], 1))

y2 = y[:, 1].reshape((y.shape[0], 1))

y3 = y[:, 2].reshape((y.shape[0], 1))

Listing 7.54: Example of splitting output data for the multi-output model.

These arrays can be provided to the model during training.

# fit model

model.fit(X, [y1,y2,y3], epochs=2000, verbose=0)

Listing 7.55: Example of fitting the multi-output MLP model.

Tying all of this together, the complete example is listed below.

# multivariate output mlp example

from numpy import array

from numpy import hstack

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# flatten input

n_input = X.shape[1] * X.shape[2]
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X = X.reshape((X.shape[0], n_input))

# separate output

y1 = y[:, 0].reshape((y.shape[0], 1))

y2 = y[:, 1].reshape((y.shape[0], 1))

y3 = y[:, 2].reshape((y.shape[0], 1))

# define model

visible = Input(shape=(n_input,))

dense = Dense(100, activation='relu')(visible)

# define output 1

output1 = Dense(1)(dense)

# define output 2

output2 = Dense(1)(dense)

# define output 2

output3 = Dense(1)(dense)

# tie together

model = Model(inputs=visible, outputs=[output1, output2, output3])

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, [y1,y2,y3], epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_input))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 7.56: Example of a multi-output MLP for multivariate time series forecasting.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[array([[100.86121]], dtype=float32),

array([[105.14738]], dtype=float32),

array([[205.97507]], dtype=float32)]

Listing 7.57: Example output from a multi-output MLP for multivariate time series forecasting.

7.4 Multi-step MLP Models

In practice, there is little difference to the MLP model in predicting a vector output that
represents different output variables (as in the previous example) or a vector output that
represents multiple time steps of one variable. Nevertheless, there are subtle and important
differences in the way the training data is prepared. In this section, we will demonstrate the
case of developing a multi-step forecast model using a vector model. Before we look at the
specifics of the model, let’s first look at the preparation of data for multi-step forecasting.

7.4.1 Data Preparation

As with one-step forecasting, a time series used for multi-step time series forecasting must be
split into samples with input and output components. Both the input and output components
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will be comprised of multiple time steps and may or may not have the same number of steps.
For example, given the univariate time series:

[10, 20, 30, 40, 50, 60, 70, 80, 90]

Listing 7.58: Example of a univariate time series.

We could use the last three time steps as input and forecast the next two time steps. The
first sample would look as follows:

Input:

[10, 20, 30]

Listing 7.59: Example input for a multi-step forecast.

Output:

[40, 50]

Listing 7.60: Example output for a multi-step forecast.

The split sequence() function below implements this behavior and will split a given
univariate time series into samples with a specified number of input and output time steps.

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 7.61: Example of a function for preparing a univariate time series for multi-step
forecasting.

We can demonstrate this function on the small contrived dataset. The complete example is
listed below.

# multi-step data preparation

from numpy import array

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):
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break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# split into samples

X, y = split_sequence(raw_seq, n_steps_in, n_steps_out)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 7.62: Example of data preparation for multi-step time series forecasting.

Running the example splits the univariate series into input and output time steps and prints
the input and output components of each.

[10 20 30] [40 50]

[20 30 40] [50 60]

[30 40 50] [60 70]

[40 50 60] [70 80]

[50 60 70] [80 90]

Listing 7.63: Example output from data preparation for multi-step time series forecasting.

Now that we know how to prepare data for multi-step forecasting, let’s look at an MLP
model that can learn this mapping.

7.4.2 Vector Output Model

The MLP can output a vector directly that can be interpreted as a multi-step forecast. This
approach was seen in the previous section were one time step of each output time series was
forecasted as a vector. With the number of input and output steps specified in the n steps in

and n steps out variables, we can define a multi-step time-series forecasting model.

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_steps_in))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

Listing 7.64: Example of preparing an MLP mode for multi-step time series forecasting.

The model can make a prediction for a single sample. We can predict the next two steps
beyond the end of the dataset by providing the input:

[70, 80, 90]

Listing 7.65: Example input for making an out-of-sample multi-step forecast.

We would expect the predicted output to be:
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[100, 110]

Listing 7.66: Example output for an out-of-sample multi-step forecast.

As expected by the model, the shape of the single sample of input data when making the
prediction must be [1, 3] for the 1 sample and 3 time steps (features) of the input and the
single feature.

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps_in))

yhat = model.predict(x_input, verbose=0)

Listing 7.67: Example of preparing data for making an out-of-sample multi-step forecast.

Tying all of this together, the MLP for multi-step forecasting with a univariate time series is
listed below.

# univariate multi-step vector-output mlp example

from numpy import array

from keras.models import Sequential

from keras.layers import Dense

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# split into samples

X, y = split_sequence(raw_seq, n_steps_in, n_steps_out)

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_steps_in))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps_in))

yhat = model.predict(x_input, verbose=0)
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print(yhat)

Listing 7.68: Example of an MLP for multi-step time series forecasting.

Running the example forecasts and prints the next two time steps in the sequence.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[102.572365 113.88405 ]]

Listing 7.69: Example output from an MLP for multi-step time series forecasting.

7.5 Multivariate Multi-step MLP Models

In the previous sections, we have looked at univariate, multivariate, and multi-step time series
forecasting. It is possible to mix and match the different types of MLP models presented so
far for the different problems. This too applies to time series forecasting problems that involve
multivariate and multi-step forecasting, but it may be a little more challenging, particularly in
preparing the data and defining the shape of inputs and outputs for the model. In this section,
we will look at short examples of data preparation and modeling for multivariate multi-step
time series forecasting as a template to ease this challenge, specifically:

1. Multiple Input Multi-step Output.

2. Multiple Parallel Input and Multi-step Output.

Perhaps the biggest stumbling block is in the preparation of data, so this is where we will
focus our attention.

7.5.1 Multiple Input Multi-step Output

There are those multivariate time series forecasting problems where the output series is separate
but dependent upon the input time series, and multiple time steps are required for the output
series. For example, consider our multivariate time series from a prior section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 7.70: Example of a multivariate time series with a dependent series.

We may use three prior time steps of each of the two input time series to predict two time
steps of the output time series.

Input:
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10, 15

20, 25

30, 35

Listing 7.71: Example input for a multi-step forecast for a dependent series.

Output:

65

85

Listing 7.72: Example output for a multi-step forecast for a dependent series.

The split sequences() function below implements this behavior.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 7.73: Example of a function for preparing data for a multi-step dependent series.

We can demonstrate this on our contrived dataset. The complete example is listed below.

# multivariate multi-step data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])
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out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 7.74: Example of preparing data for multi-step forecasting for a dependent series.

Running the example first prints the shape of the prepared training data. We can see that
the shape of the input portion of the samples is three-dimensional, comprised of six samples,
with three time steps and two variables for the two input time series. The output portion of the
samples is two-dimensional for the six samples and the two time steps for each sample to be
predicted. The prepared samples are then printed to confirm that the data was prepared as we
specified.

(6, 3, 2) (6, 2)

[[10 15]

[20 25]

[30 35]] [65 85]

[[20 25]

[30 35]

[40 45]] [ 85 105]

[[30 35]

[40 45]

[50 55]] [105 125]

[[40 45]

[50 55]

[60 65]] [125 145]

[[50 55]

[60 65]

[70 75]] [145 165]

[[60 65]

[70 75]

[80 85]] [165 185]

Listing 7.75: Example output from preparing data for multi-step forecasting for a dependent
series.

We can now develop an MLP model for multi-step predictions using a vector output. The
complete example is listed below.

# multivariate multi-step mlp example

from numpy import array

from numpy import hstack

from keras.models import Sequential



7.5. Multivariate Multi-step MLP Models 80

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

# flatten input

n_input = X.shape[1] * X.shape[2]

X = X.reshape((X.shape[0], n_input))

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_input))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[70, 75], [80, 85], [90, 95]])

x_input = x_input.reshape((1, n_input))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 7.76: Example of an MLP model for multi-step forecasting for a dependent series.

Running the example fits the model and predicts the next two time steps of the output
sequence beyond the dataset. We would expect the next two steps to be [185, 205].

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.
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[[186.53822 208.41725]]

Listing 7.77: Example output from an MLP model for multi-step forecasting for a dependent
series.

7.5.2 Multiple Parallel Input and Multi-step Output

A problem with parallel time series may require the prediction of multiple time steps of each
time series. For example, consider our multivariate time series from a prior section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 7.78: Example of a multivariate time series.

We may use the last three time steps from each of the three time series as input to the model
and predict the next time steps of each of the three time series as output. The first sample in
the training dataset would be the following.

Input:

10, 15, 25

20, 25, 45

30, 35, 65

Listing 7.79: Example input for the first a multivariate time series sample.

Output:

40, 45, 85

50, 55, 105

Listing 7.80: Example output for the first a multivariate time series sample.

The split sequences() function below implements this behavior.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)
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return array(X), array(y)

Listing 7.81: Example of a function for preparing data for a multi-step multivariate series.

We can demonstrate this function on the small contrived dataset. The complete example is
listed below.

# multivariate multi-step data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 7.82: Example of preparing data for multi-step forecasting for a multivariate series.

Running the example first prints the shape of the prepared training dataset. We can see
that both the input (X) and output (Y ) elements of the dataset are three dimensional for the
number of samples, time steps, and variables or parallel time series respectively. The input and
output elements of each series are then printed side by side so that we can confirm that the
data was prepared as we expected.

(5, 3, 3) (5, 2, 3)

[[10 15 25]
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[20 25 45]

[30 35 65]] [[ 40 45 85]

[ 50 55 105]]

[[20 25 45]

[30 35 65]

[40 45 85]] [[ 50 55 105]

[ 60 65 125]]

[[ 30 35 65]

[ 40 45 85]

[ 50 55 105]] [[ 60 65 125]

[ 70 75 145]]

[[ 40 45 85]

[ 50 55 105]

[ 60 65 125]] [[ 70 75 145]

[ 80 85 165]]

[[ 50 55 105]

[ 60 65 125]

[ 70 75 145]] [[ 80 85 165]

[ 90 95 185]]

Listing 7.83: Example output from preparing data for multi-step forecasting for a multivariate
series.

We can now develop an MLP model to make multivariate multi-step forecasts. In addition
to flattening the shape of the input data, as we have in prior examples, we must also flatten the
three-dimensional structure of the output data. This is because the MLP model is only capable
of taking vector inputs and outputs.

# flatten input

n_input = X.shape[1] * X.shape[2]

X = X.reshape((X.shape[0], n_input))

# flatten output

n_output = y.shape[1] * y.shape[2]

y = y.reshape((y.shape[0], n_output))

Listing 7.84: Example of reshaping input and output data for fitting an MLP model for a
multi-step multivariate series.

The complete example is listed below.

# multivariate multi-step mlp example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern
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seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

# flatten input

n_input = X.shape[1] * X.shape[2]

X = X.reshape((X.shape[0], n_input))

# flatten output

n_output = y.shape[1] * y.shape[2]

y = y.reshape((y.shape[0], n_output))

# define model

model = Sequential()

model.add(Dense(100, activation='relu', input_dim=n_input))

model.add(Dense(n_output))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[60, 65, 125], [70, 75, 145], [80, 85, 165]])

x_input = x_input.reshape((1, n_input))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 7.85: Example of an MLP model for multi-step forecasting for a multivariate series.

Running the example fits the model and predicts the values for each of the three time steps
for the next two time steps beyond the end of the dataset. We would expect the values for these
series and time steps to be as follows:

90, 95, 185

100, 105, 205

Listing 7.86: Expected output for an out-of-sample multi-step multivariate forecast.

We can see that the model forecast gets reasonably close to the expected values.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[ 91.28376 96.567 188.37575 100.54482 107.9219 208.108 ]]
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Listing 7.87: Example output from an MLP model for multi-step forecasting for a multivariate
series.

7.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Problem Differences. Explain the main changes to the MLP required when modeling
each of univariate, multivariate and multi-step time series forecasting problems.

� Experiment. Select one example and modify it to work with your own small contrived
dataset.

� Develop Framework. Use the examples in this chapter as the basis for a framework for
automatically developing an MLP model for a given time series forecasting problem.

If you explore any of these extensions, I’d love to know.

7.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

7.7.1 Books

� Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, 1999.
https://amzn.to/2vORBWO.

� Deep Learning, 2016.
https://amzn.to/2MQyLVZ

� Deep Learning with Python, 2017.
https://amzn.to/2vMRiMe

7.7.2 APIs

� Keras: The Python Deep Learning library.
https://keras.io/

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Getting started with the Keras functional API.
https://keras.io/getting-started/functional-api-guide/

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

https://amzn.to/2vORBWO
https://amzn.to/2MQyLVZ
https://amzn.to/2vMRiMe
https://keras.io/
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/models/sequential/
https://keras.io/layers/core/
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7.8 Summary

In this tutorial, you discovered how to develop a suite of Multilayer Perceptron, or MLP, models
for a range of standard time series forecasting problems. Specifically, you learned:

� How to develop MLP models for univariate time series forecasting.

� How to develop MLP models for multivariate time series forecasting.

� How to develop MLP models for multi-step time series forecasting.

7.8.1 Next

In the next lesson, you will discover how to develop Convolutional Neural Network models for
time series forecasting.



Chapter 8

How to Develop CNNs for Time Series
Forecasting

Convolutional Neural Network models, or CNNs for short, can be applied to time series
forecasting. There are many types of CNN models that can be used for each specific type of
time series forecasting problem. In this tutorial, you will discover how to develop a suite of
CNN models for a range of standard time series forecasting problems. The objective of this
tutorial is to provide standalone examples of each model on each type of time series problem as
a template that you can copy and adapt for your specific time series forecasting problem. After
completing this tutorial, you will know:

� How to develop CNN models for univariate time series forecasting.

� How to develop CNN models for multivariate time series forecasting.

� How to develop CNN models for multi-step time series forecasting.

Let’s get started.

8.1 Tutorial Overview

In this tutorial, we will explore how to develop CNN models for time series forecasting. The
models are demonstrated on small contrived time series problems intended to give the flavor
of the type of time series problem being addressed. The chosen configuration of the models is
arbitrary and not optimized for each problem; that was not the goal. This tutorial is divided
into four parts; they are:

1. Univariate CNN Models

2. Multivariate CNN Models

3. Multi-step CNN Models

4. Multivariate Multi-step CNN Models

87
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8.2 Univariate CNN Models

Although traditionally developed for two-dimensional image data, CNNs can be used to model
univariate time series forecasting problems. Univariate time series are datasets comprised of a
single series of observations with a temporal ordering and a model is required to learn from the
series of past observations to predict the next value in the sequence. This section is divided into
two parts; they are:

1. Data Preparation

2. CNN Model

8.2.1 Data Preparation

Before a univariate series can be modeled, it must be prepared. The CNN model will learn a
function that maps a sequence of past observations as input to an output observation. As such,
the sequence of observations must be transformed into multiple examples from which the model
can learn. Consider a given univariate sequence:

[10, 20, 30, 40, 50, 60, 70, 80, 90]

Listing 8.1: Example of a univariate time series.

We can divide the sequence into multiple input/output patterns called samples, where three
time steps are used as input and one time step is used as output for the one-step prediction
that is being learned.

X, y

10, 20, 30, 40

20, 30, 40, 50

30, 40, 50, 60

...

Listing 8.2: Example of a univariate time series as a supervised learning problem.

The split sequence() function below implements this behavior and will split a given
univariate sequence into multiple samples where each sample has a specified number of time
steps and the output is a single time step.

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 8.3: Example of a function to split a univariate series into a supervised learning problem.
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We can demonstrate this function on our small contrived dataset above. The complete
example is listed below.

# univariate data preparation

from numpy import array

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 8.4: Example of transforming a univariate time series into a supervised learning problem.

Running the example splits the univariate series into six samples where each sample has
three input time steps and one output time step.

[10 20 30] 40

[20 30 40] 50

[30 40 50] 60

[40 50 60] 70

[50 60 70] 80

[60 70 80] 90

Listing 8.5: Example output from transforming a univariate time series into a supervised learning
problem.

Now that we know how to prepare a univariate series for modeling, let’s look at developing
a CNN model that can learn the mapping of inputs to outputs.

8.2.2 CNN Model

A one-dimensional CNN is a CNN model that has a convolutional hidden layer that operates
over a 1D sequence. This is followed by perhaps a second convolutional layer in some cases,
such as very long input sequences, and then a pooling layer whose job it is to distill the output
of the convolutional layer to the most salient elements. The convolutional and pooling layers
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are followed by a dense fully connected layer that interprets the features extracted by the
convolutional part of the model. A flatten layer is used between the convolutional layers and
the dense layer to reduce the feature maps to a single one-dimensional vector. We can define a
1D CNN Model for univariate time series forecasting as follows.

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Listing 8.6: Example of defining a CNN model.

Key in the definition is the shape of the input; that is what the model expects as input for
each sample in terms of the number of time steps and the number of features. We are working
with a univariate series, so the number of features is one, for one variable. The number of
time steps as input is the number we chose when preparing our dataset as an argument to the
split sequence() function.

The input shape for each sample is specified in the input shape argument on the definition
of the first hidden layer. We almost always have multiple samples, therefore, the model will
expect the input component of training data to have the dimensions or shape: [samples,

timesteps, features]. Our split sequence() function in the previous section outputs the
X with the shape [samples, timesteps], so we can easily reshape it to have an additional
dimension for the one feature.

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

Listing 8.7: Example of reshaping data for the CNN.

The CNN does not actually view the data as having time steps, instead, it is treated as a
sequence over which convolutional read operations can be performed, like a one-dimensional
image. In this example, we define a convolutional layer with 64 filter maps and a kernel size
of 2. This is followed by a max pooling layer and a dense layer to interpret the input feature.
An output layer is specified that predicts a single numerical value. The model is fit using the
efficient Adam version of stochastic gradient descent and optimized using the mean squared
error, or ‘mse’, loss function. Once the model is defined, we can fit it on the training dataset.

# fit model

model.fit(X, y, epochs=1000, verbose=0)

Listing 8.8: Example of fitting a CNN model.

After the model is fit, we can use it to make a prediction. We can predict the next value
in the sequence by providing the input: [70, 80, 90]. And expecting the model to predict
something like: [100]. The model expects the input shape to be three-dimensional with
[samples, timesteps, features], therefore, we must reshape the single input sample before
making the prediction.
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# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 8.9: Example of reshaping data read for making a prediction.

We can tie all of this together and demonstrate how to develop a 1D CNN model for
univariate time series forecasting and make a single prediction.

# univariate cnn example

from numpy import array

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=1000, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps, n_features))
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yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 8.10: Example of a CNN model for univariate time series forecasting.

Running the example prepares the data, fits the model, and makes a prediction. We can see
that the model predicts the next value in the sequence.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[101.67965]]

Listing 8.11: Example output from a CNN model for univariate time series forecasting.

For an example of a CNN applied to a real-world univariate time series forecasting problem
see Chapter 14. For an example of grid searching CNN hyperparameters on a univariate time
series forecasting problem, see Chapter 15.

8.3 Multivariate CNN Models

Multivariate time series data means data where there is more than one observation for each
time step. There are two main models that we may require with multivariate time series data;
they are:

1. Multiple Input Series.

2. Multiple Parallel Series.

Let’s take a look at each in turn.

8.3.1 Multiple Input Series

A problem may have two or more parallel input time series and an output time series that is
dependent on the input time series. The input time series are parallel because each series has
observations at the same time steps. We can demonstrate this with a simple example of two
parallel input time series where the output series is the simple addition of the input series.

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

Listing 8.12: Example of defining multiple parallel series.

We can reshape these three arrays of data as a single dataset where each row is a time step
and each column is a separate time series. This is a standard way of storing parallel time series
in a CSV file.
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# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

Listing 8.13: Example of defining parallel series as a dataset.

The complete example is listed below.

# multivariate data preparation

from numpy import array

from numpy import hstack

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

print(dataset)

Listing 8.14: Example of defining a dependent time series dataset.

Running the example prints the dataset with one row per time step and one column for each
of the two input and one output parallel time series.

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 8.15: Example output from defining a dependent time series dataset.

As with the univariate time series, we must structure these data into samples with input
and output samples. A 1D CNN model needs sufficient context to learn a mapping from an
input sequence to an output value. CNNs can support parallel input time series as separate
channels, like red, green, and blue components of an image. Therefore, we need to split the
data into samples maintaining the order of observations across the two input sequences. If we
chose three input time steps, then the first sample would look as follows:

Input:

10, 15

20, 25

30, 35

Listing 8.16: Example input from the first sample.
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Output:

65

Listing 8.17: Example output from the first sample.

That is, the first three time steps of each parallel series are provided as input to the model
and the model associates this with the value in the output series at the third time step, in this
case, 65. We can see that, in transforming the time series into input/output samples to train
the model, that we will have to discard some values from the output time series where we do
not have values in the input time series at prior time steps. In turn, the choice of the size of
the number of input time steps will have an important effect on how much of the training data
is used. We can define a function named split sequences() that will take a dataset as we
have defined it with rows for time steps and columns for parallel series and return input/output
samples.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 8.18: Example of a function for preparing samples for a dependent time series.

We can test this function on our dataset using three time steps for each input time series as
input. The complete example is listed below.

# multivariate data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence
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in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 8.19: Example of splitting a dependent series into samples.

Running the example first prints the shape of the X and y components. We can see that the
X component has a three-dimensional structure. The first dimension is the number of samples,
in this case 7. The second dimension is the number of time steps per sample, in this case 3, the
value specified to the function. Finally, the last dimension specifies the number of parallel time
series or the number of variables, in this case 2 for the two parallel series.

This is the exact three-dimensional structure expected by a 1D CNN as input. The data
is ready to use without further reshaping. We can then see that the input and output for
each sample is printed, showing the three time steps for each of the two input series and the
associated output for each sample.

(7, 3, 2) (7,)

[[10 15]

[20 25]

[30 35]] 65

[[20 25]

[30 35]

[40 45]] 85

[[30 35]

[40 45]

[50 55]] 105

[[40 45]

[50 55]

[60 65]] 125

[[50 55]

[60 65]

[70 75]] 145

[[60 65]

[70 75]

[80 85]] 165

[[70 75]

[80 85]

[90 95]] 185

Listing 8.20: Example output from splitting a dependent series into samples.
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CNN Model

We are now ready to fit a 1D CNN model on this data, specifying the expected number of time
steps and features to expect for each input sample, in this case three and two respectively.

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Listing 8.21: Example of defining a CNN for forecasting a dependent series.

When making a prediction, the model expects three time steps for two input time series.
We can predict the next value in the output series providing the input values of:

80, 85

90, 95

100, 105

Listing 8.22: Example input for forecasting out-of-sample.

The shape of the one sample with three time steps and two variables must be [1, 3, 2].
We would expect the next value in the sequence to be 100 + 105 or 205.

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 8.23: Example of preparing input for forecasting out-of-sample.

The complete example is listed below.

# multivariate cnn example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]
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X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=1000, verbose=0)

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 8.24: Example of a CNN model for forecasting a dependent time series.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[206.0161]]

Listing 8.25: Example output from a CNN model for forecasting a dependent time series.

Multi-headed CNN Model

There is another, more elaborate way to model the problem. Each input series can be handled by
a separate CNN and the output of each of these submodels can be combined before a prediction
is made for the output sequence. We can refer to this as a multi-headed CNN model. It may
offer more flexibility or better performance depending on the specifics of the problem that is
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being modeled. For example, it allows you to configure each submodel differently for each input
series, such as the number of filter maps and the kernel size. This type of model can be defined
in Keras using the Keras functional API. First, we can define the first input model as a 1D
CNN with an input layer that expects vectors with n steps and 1 feature.

# first input model

visible1 = Input(shape=(n_steps, n_features))

cnn1 = Conv1D(filters=64, kernel_size=2, activation='relu')(visible1)

cnn1 = MaxPooling1D(pool_size=2)(cnn1)

cnn1 = Flatten()(cnn1)

Listing 8.26: Example of defining the first input model.

We can define the second input submodel in the same way.

# second input model

visible2 = Input(shape=(n_steps, n_features))

cnn2 = Conv1D(filters=64, kernel_size=2, activation='relu')(visible2)

cnn2 = MaxPooling1D(pool_size=2)(cnn2)

cnn2 = Flatten()(cnn2)

Listing 8.27: Example of defining the second input model.

Now that both input submodels have been defined, we can merge the output from each
model into one long vector which can be interpreted before making a prediction for the output
sequence.

# merge input models

merge = concatenate([cnn1, cnn2])

dense = Dense(50, activation='relu')(merge)

output = Dense(1)(dense)

Listing 8.28: Example of defining the output model.

We can then tie the inputs and outputs together.

# connect input and output models

model = Model(inputs=[visible1, visible2], outputs=output)

Listing 8.29: Example of connecting the input and output models.

The image below provides a schematic for how this model looks, including the shape of the
inputs and outputs of each layer.
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Figure 8.1: Plot of Multi-headed 1D CNN for Multivariate Time Series Forecasting.

This model requires input to be provided as a list of two elements where each element in the
list contains data for one of the submodels. In order to achieve this, we can split the 3D input
data into two separate arrays of input data; that is from one array with the shape [7, 3, 2]

to two 3D arrays with [7, 3, 1].

# one time series per head

n_features = 1

# separate input data

X1 = X[:, :, 0].reshape(X.shape[0], X.shape[1], n_features)

X2 = X[:, :, 1].reshape(X.shape[0], X.shape[1], n_features)

Listing 8.30: Example of preparing the input data for the multi-headed model.

These data can then be provided in order to fit the model.

# fit model

model.fit([X1, X2], y, epochs=1000, verbose=0)

Listing 8.31: Example of fitting the multi-headed model.

Similarly, we must prepare the data for a single sample as two separate two-dimensional
arrays when making a single one-step prediction.

# reshape one sample for making a prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x1 = x_input[:, 0].reshape((1, n_steps, n_features))

x2 = x_input[:, 1].reshape((1, n_steps, n_features))

Listing 8.32: Example of preparing data for forecasting with the multi-headed model.
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We can tie all of this together; the complete example is listed below.

# multivariate multi-headed 1d cnn example

from numpy import array

from numpy import hstack

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.layers.merge import concatenate

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# one time series per head

n_features = 1

# separate input data

X1 = X[:, :, 0].reshape(X.shape[0], X.shape[1], n_features)

X2 = X[:, :, 1].reshape(X.shape[0], X.shape[1], n_features)

# first input model

visible1 = Input(shape=(n_steps, n_features))

cnn1 = Conv1D(filters=64, kernel_size=2, activation='relu')(visible1)

cnn1 = MaxPooling1D(pool_size=2)(cnn1)

cnn1 = Flatten()(cnn1)

# second input model

visible2 = Input(shape=(n_steps, n_features))

cnn2 = Conv1D(filters=64, kernel_size=2, activation='relu')(visible2)

cnn2 = MaxPooling1D(pool_size=2)(cnn2)
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cnn2 = Flatten()(cnn2)

# merge input models

merge = concatenate([cnn1, cnn2])

dense = Dense(50, activation='relu')(merge)

output = Dense(1)(dense)

model = Model(inputs=[visible1, visible2], outputs=output)

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit([X1, X2], y, epochs=1000, verbose=0)

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x1 = x_input[:, 0].reshape((1, n_steps, n_features))

x2 = x_input[:, 1].reshape((1, n_steps, n_features))

yhat = model.predict([x1, x2], verbose=0)

print(yhat)

Listing 8.33: Example of a Multi-headed CNN for forecasting a dependent time series.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[205.871]]

Listing 8.34: Example output from a Multi-headed CNN model for forecasting a dependent
time series.

For an example of CNN models developed for a multivariate time series classification problem,
see Chapter 24.

8.3.2 Multiple Parallel Series

An alternate time series problem is the case where there are multiple parallel time series and a
value must be predicted for each. For example, given the data from the previous section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 8.35: Example of parallel time series.

We may want to predict the value for each of the three time series for the next time step. This
might be referred to as multivariate forecasting. Again, the data must be split into input/output
samples in order to train a model. The first sample of this dataset would be:

Input:
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10, 15, 25

20, 25, 45

30, 35, 65

Listing 8.36: Example input from the first sample.

Output:

40, 45, 85

Listing 8.37: Example output from the first sample.

The split sequences() function below will split multiple parallel time series with rows for
time steps and one series per column into the required input/output shape.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 8.38: Example of splitting multiple parallel time series into samples.

We can demonstrate this on the contrived problem; the complete example is listed below.

# multivariate output data prep

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])



8.3. Multivariate CNN Models 103

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 8.39: Example of splitting multiple parallel series into samples.

Running the example first prints the shape of the prepared X and y components. The
shape of X is three-dimensional, including the number of samples (6), the number of time steps
chosen per sample (3), and the number of parallel time series or features (3). The shape of y
is two-dimensional as we might expect for the number of samples (6) and the number of time
variables per sample to be predicted (3). The data is ready to use in a 1D CNN model that
expects three-dimensional input and two-dimensional output shapes for the X and y components
of each sample. Then, each of the samples is printed showing the input and output components
of each sample.

(6, 3, 3) (6, 3)

[[10 15 25]

[20 25 45]

[30 35 65]] [40 45 85]

[[20 25 45]

[30 35 65]

[40 45 85]] [ 50 55 105]

[[ 30 35 65]

[ 40 45 85]

[ 50 55 105]] [ 60 65 125]

[[ 40 45 85]

[ 50 55 105]

[ 60 65 125]] [ 70 75 145]

[[ 50 55 105]

[ 60 65 125]

[ 70 75 145]] [ 80 85 165]

[[ 60 65 125]

[ 70 75 145]

[ 80 85 165]] [ 90 95 185]

Listing 8.40: Example output from splitting multiple parallel series into samples.

Vector-Output CNN Model

We are now ready to fit a 1D CNN model on this data. In this model, the number of time steps
and parallel series (features) are specified for the input layer via the input shape argument.
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The number of parallel series is also used in the specification of the number of values to predict
by the model in the output layer; again, this is three.

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(n_features))

model.compile(optimizer='adam', loss='mse')

Listing 8.41: Example of defining a CNN model for forecasting multiple parallel time series.

We can predict the next value in each of the three parallel series by providing an input of
three time steps for each series.

70, 75, 145

80, 85, 165

90, 95, 185

Listing 8.42: Example input for forecasting out-of-sample.

The shape of the input for making a single prediction must be 1 sample, 3 time steps, and 3
features, or [1, 3, 3].

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 8.43: Example of preparing data for forecasting out-of-sample.

We would expect the vector output to be: [100, 105, 205]. We can tie all of this together
and demonstrate a 1D CNN for multivariate output time series forecasting below.

# multivariate output 1d cnn example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)
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y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(n_features))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=3000, verbose=0)

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 8.44: Example of a CNN model for forecasting multiple parallel time series.

Running the example prepares the data, fits the model and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[100.11272 105.32213 205.53436]]

Listing 8.45: Example output from a CNN model for forecasting multiple parallel time series.

Multi-output CNN Model

As with multiple input series, there is another more elaborate way to model the problem. Each
output series can be handled by a separate output CNN model. We can refer to this as a
multi-output CNN model. It may offer more flexibility or better performance depending on the
specifics of the problem that is being modeled. This type of model can be defined in Keras
using the Keras functional API. First, we can define the first input model as a 1D CNN model.
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# define model

visible = Input(shape=(n_steps, n_features))

cnn = Conv1D(filters=64, kernel_size=2, activation='relu')(visible)

cnn = MaxPooling1D(pool_size=2)(cnn)

cnn = Flatten()(cnn)

cnn = Dense(50, activation='relu')(cnn)

Listing 8.46: Example of defining the input model.

We can then define one output layer for each of the three series that we wish to forecast,
where each output submodel will forecast a single time step.

# define output 1

output1 = Dense(1)(cnn)

# define output 2

output2 = Dense(1)(cnn)

# define output 3

output3 = Dense(1)(cnn)

Listing 8.47: Example of defining the output models.

We can then tie the input and output layers together into a single model.

# tie together

model = Model(inputs=visible, outputs=[output1, output2, output3])

model.compile(optimizer='adam', loss='mse')

Listing 8.48: Example of connecting the input and output models.

To make the model architecture clear, the schematic below clearly shows the three separate
output layers of the model and the input and output shapes of each layer.

Figure 8.2: Plot of Multi-output 1D CNN for Multivariate Time Series Forecasting.
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When training the model, it will require three separate output arrays per sample. We can
achieve this by converting the output training data that has the shape [7, 3] to three arrays
with the shape [7, 1].

# separate output

y1 = y[:, 0].reshape((y.shape[0], 1))

y2 = y[:, 1].reshape((y.shape[0], 1))

y3 = y[:, 2].reshape((y.shape[0], 1))

Listing 8.49: Example of preparing the output samples for fitting the multi-output model.

These arrays can be provided to the model during training.

# fit model

model.fit(X, [y1,y2,y3], epochs=2000, verbose=0)

Listing 8.50: Example of fitting the multi-output model.

Tying all of this together, the complete example is listed below.

# multivariate output 1d cnn example

from numpy import array

from numpy import hstack

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output
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X, y = split_sequences(dataset, n_steps)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# separate output

y1 = y[:, 0].reshape((y.shape[0], 1))

y2 = y[:, 1].reshape((y.shape[0], 1))

y3 = y[:, 2].reshape((y.shape[0], 1))

# define model

visible = Input(shape=(n_steps, n_features))

cnn = Conv1D(filters=64, kernel_size=2, activation='relu')(visible)

cnn = MaxPooling1D(pool_size=2)(cnn)

cnn = Flatten()(cnn)

cnn = Dense(50, activation='relu')(cnn)

# define output 1

output1 = Dense(1)(cnn)

# define output 2

output2 = Dense(1)(cnn)

# define output 3

output3 = Dense(1)(cnn)

# tie together

model = Model(inputs=visible, outputs=[output1, output2, output3])

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, [y1,y2,y3], epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 8.51: Example of a Multi-output CNN model for forecasting multiple parallel time series.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[array([[100.96118]], dtype=float32),

array([[105.502686]], dtype=float32),

array([[205.98045]], dtype=float32)]

Listing 8.52: Example output from a Multi-output CNN model for forecasting multiple parallel
time series.

For an example of CNN models developed for a multivariate time series forecasting problem,
see Chapter 19.

8.4 Multi-step CNN Models

In practice, there is little difference to the 1D CNN model in predicting a vector output that
represents different output variables (as in the previous example), or a vector output that
represents multiple time steps of one variable. Nevertheless, there are subtle and important
differences in the way the training data is prepared. In this section, we will demonstrate the
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case of developing a multi-step forecast model using a vector model. Before we look at the
specifics of the model, let’s first look at the preparation of data for multi-step forecasting.

8.4.1 Data Preparation

As with one-step forecasting, a time series used for multi-step time series forecasting must be
split into samples with input and output components. Both the input and output components
will be comprised of multiple time steps and may or may not have the same number of steps.
For example, given the univariate time series:

[10, 20, 30, 40, 50, 60, 70, 80, 90]

Listing 8.53: Example of a univariate time series.

We could use the last three time steps as input and forecast the next two time steps. The
first sample would look as follows:

Input:

[10, 20, 30]

Listing 8.54: Example input for the first sample.

Output:

[40, 50]

Listing 8.55: Example output for the first sample.

The split sequence() function below implements this behavior and will split a given
univariate time series into samples with a specified number of input and output time steps.

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 8.56: Example of function for splitting a univariate time series into samples for multi-step
forecasting.

We can demonstrate this function on the small contrived dataset. The complete example is
listed below.

# multi-step data preparation

from numpy import array

# split a univariate sequence into samples
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def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# split into samples

X, y = split_sequence(raw_seq, n_steps_in, n_steps_out)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 8.57: Example transforming a time series into samples for multi-step forecasting.

Running the example splits the univariate series into input and output time steps and prints
the input and output components of each.

[10 20 30] [40 50]

[20 30 40] [50 60]

[30 40 50] [60 70]

[40 50 60] [70 80]

[50 60 70] [80 90]

Listing 8.58: Example output from transforming a time series into samples for multi-step
forecasting.

Now that we know how to prepare data for multi-step forecasting, let’s look at a 1D CNN
model that can learn this mapping.

8.4.2 Vector Output Model

The 1D CNN can output a vector directly that can be interpreted as a multi-step forecast. This
approach was seen in the previous section were one time step of each output time series was
forecasted as a vector. As with the 1D CNN models for univariate data in a prior section, the
prepared samples must first be reshaped. The CNN expects data to have a three-dimensional
structure of [samples, timesteps, features], and in this case, we only have one feature so
the reshape is straightforward.

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

Listing 8.59: Example of reshaping data for multi-step forecasting.
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With the number of input and output steps specified in the n steps in and n steps out

variables, we can define a multi-step time-series forecasting model.

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps_in,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

Listing 8.60: Example of defining a CNN model for multi-step forecasting.

The model can make a prediction for a single sample. We can predict the next two steps
beyond the end of the dataset by providing the input: [70, 80, 90]. We would expect the
predicted output to be: [100, 110]. As expected by the model, the shape of the single sample
of input data when making the prediction must be [1, 3, 1] for the 1 sample, 3 time steps of
the input, and the single feature.

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 8.61: Example of reshaping data for making an out-of-sample forecast.

Tying all of this together, the 1D CNN for multi-step forecasting with a univariate time
series is listed below.

# univariate multi-step vector-output 1d cnn example

from numpy import array

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
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# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# split into samples

X, y = split_sequence(raw_seq, n_steps_in, n_steps_out)

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps_in,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 8.62: Example of a vector-output CNN for multi-step forecasting.

Running the example forecasts and prints the next two time steps in the sequence.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[102.86651 115.08979]]

Listing 8.63: Example output from a vector-output CNN for multi-step forecasting.

For an example of CNN models developed for a multi-step time series forecasting problem,
see Chapter 19.

8.5 Multivariate Multi-step CNN Models

In the previous sections, we have looked at univariate, multivariate, and multi-step time series
forecasting. It is possible to mix and match the different types of 1D CNN models presented so
far for the different problems. This too applies to time series forecasting problems that involve
multivariate and multi-step forecasting, but it may be a little more challenging. In this section,
we will explore short examples of data preparation and modeling for multivariate multi-step
time series forecasting as a template to ease this challenge, specifically:

1. Multiple Input Multi-step Output.

2. Multiple Parallel Input and Multi-step Output.

Perhaps the biggest stumbling block is in the preparation of data, so this is where we will
focus our attention.
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8.5.1 Multiple Input Multi-step Output

There are those multivariate time series forecasting problems where the output series is separate
but dependent upon the input time series, and multiple time steps are required for the output
series. For example, consider our multivariate time series from a prior section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 8.64: Example of a multivariate time series.

We may use three prior time steps of each of the two input time series to predict two time
steps of the output time series.

Input:

10, 15

20, 25

30, 35

Listing 8.65: Example input for the first sample.

Output:

65

85

Listing 8.66: Example output for the first sample.

The split sequences() function below implements this behavior.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 8.67: Example of a function for transforming a multivariate time series into samples for
multi-step forecasting.

We can demonstrate this on our contrived dataset. The complete example is listed below.
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# multivariate multi-step data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 8.68: Example preparing a multivariate input dependent time series with multi-step
forecasts.

Running the example first prints the shape of the prepared training data. We can see that
the shape of the input portion of the samples is three-dimensional, comprised of six samples,
with three time steps and two variables for the two input time series. The output portion of the
samples is two-dimensional for the six samples and the two time steps for each sample to be
predicted. The prepared samples are then printed to confirm that the data was prepared as we
specified.

(6, 3, 2) (6, 2)

[[10 15]

[20 25]

[30 35]] [65 85]

[[20 25]
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[30 35]

[40 45]] [ 85 105]

[[30 35]

[40 45]

[50 55]] [105 125]

[[40 45]

[50 55]

[60 65]] [125 145]

[[50 55]

[60 65]

[70 75]] [145 165]

[[60 65]

[70 75]

[80 85]] [165 185]

Listing 8.69: Example output from preparing a multivariate input dependent time series with
multi-step forecasts.

We can now develop a 1D CNN model for multi-step predictions. In this case, we will
demonstrate a vector output model. The complete example is listed below.

# multivariate multi-step 1d cnn example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))
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# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps_in,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction

x_input = array([[70, 75], [80, 85], [90, 95]])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 8.70: Example of a CNN model for multivariate dependent time series with multi-step
forecasts.

Running the example fits the model and predicts the next two time steps of the output
sequence beyond the dataset. We would expect the next two steps to be [185, 205].

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[185.57011 207.77893]]

Listing 8.71: Example output from a CNN model for multivariate dependent time series with
multi-step forecasts.

8.5.2 Multiple Parallel Input and Multi-step Output

A problem with parallel time series may require the prediction of multiple time steps of each
time series. For example, consider our multivariate time series from a prior section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 8.72: Example of a multivariate time series.



8.5. Multivariate Multi-step CNN Models 117

We may use the last three time steps from each of the three time series as input to the
model, and predict the next time steps of each of the three time series as output. The first
sample in the training dataset would be the following.

Input:

10, 15, 25

20, 25, 45

30, 35, 65

Listing 8.73: Example input for the first sample.

Output:

40, 45, 85

50, 55, 105

Listing 8.74: Example output for the first sample.

The split sequences() function below implements this behavior.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 8.75: Example of a function for transforming a multivariate time series into samples for
multi-step forecasting.

We can demonstrate this function on the small contrived dataset. The complete example is
listed below.

# multivariate multi-step data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]
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X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 8.76: Example preparing a multivariate parallel time series with multi-step forecasts.

Running the example first prints the shape of the prepared training dataset. We can see
that both the input (X) and output (Y ) elements of the dataset are three dimensional for the
number of samples, time steps, and variables or parallel time series respectively. The input and
output elements of each series are then printed side by side so that we can confirm that the
data was prepared as we expected.

(5, 3, 3) (5, 2, 3)

[[10 15 25]

[20 25 45]

[30 35 65]] [[ 40 45 85]

[ 50 55 105]]

[[20 25 45]

[30 35 65]

[40 45 85]] [[ 50 55 105]

[ 60 65 125]]

[[ 30 35 65]

[ 40 45 85]

[ 50 55 105]] [[ 60 65 125]

[ 70 75 145]]

[[ 40 45 85]

[ 50 55 105]

[ 60 65 125]] [[ 70 75 145]

[ 80 85 165]]

[[ 50 55 105]

[ 60 65 125]

[ 70 75 145]] [[ 80 85 165]

[ 90 95 185]]

Listing 8.77: Example output from preparing a multivariate parallel time series with multi-step
forecasts.
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We can now develop a 1D CNN model for this dataset. We will use a vector-output model
in this case. As such, we must flatten the three-dimensional structure of the output portion of
each sample in order to train the model. This means, instead of predicting two steps for each
series, the model is trained on and expected to predict a vector of six numbers directly.

# flatten output

n_output = y.shape[1] * y.shape[2]

y = y.reshape((y.shape[0], n_output))

Listing 8.78: Example of flattening output samples for training the model with vector output.

The complete example is listed below.

# multivariate output multi-step 1d cnn example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# convert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

# flatten output

n_output = y.shape[1] * y.shape[2]

y = y.reshape((y.shape[0], n_output))

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]
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# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps_in,

n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(n_output))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=7000, verbose=0)

# demonstrate prediction

x_input = array([[60, 65, 125], [70, 75, 145], [80, 85, 165]])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 8.79: Example of a CNN model for multivariate parallel time series with multi-step
forecasts.

Running the example fits the model and predicts the values for each of the three time steps
for the next two time steps beyond the end of the dataset. We would expect the values for these
series and time steps to be as follows:

90, 95, 185

100, 105, 205

Listing 8.80: Example output for the out-of-sample forecast.

We can see that the model forecast gets reasonably close to the expected values.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[ 90.47855 95.621284 186.02629 100.48118 105.80815 206.52821 ]]

Listing 8.81: Example output from a CNN model for multivariate parallel time series with
multi-step forecasts.

For an example of CNN models developed for a multivariate multi-step time series forecasting
problem, see Chapter 19.

8.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Problem Differences. Explain the main changes to the CNN required when modeling
each of univariate, multivariate and multi-step time series forecasting problems.

� Experiment. Select one example and modify it to work with your own small contrived
dataset.

� Develop Framework. Use the examples in this chapter as the basis for a framework for
automatically developing an CNN model for a given time series forecasting problem.

If you explore any of these extensions, I’d love to know.
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8.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

8.7.1 Books

� Deep Learning, 2016.
https://amzn.to/2MQyLVZ

� Deep Learning with Python, 2017.
https://amzn.to/2vMRiMe

8.7.2 Papers

� Backpropagation Applied to Handwritten Zip Code Recognition, 1989.
https://ieeexplore.ieee.org/document/6795724/

� Gradient-based Learning Applied to Document Recognition, 1998.
https://ieeexplore.ieee.org/document/726791/

� Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014.
https://arxiv.org/abs/1409.1556

8.7.3 APIs

� Keras: The Python Deep Learning library.
https://keras.io/

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Getting started with the Keras functional API.
https://keras.io/getting-started/functional-api-guide/

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Pooling Layers API.
https://keras.io/layers/pooling/

https://amzn.to/2MQyLVZ
https://amzn.to/2vMRiMe
https://ieeexplore.ieee.org/document/6795724/
https://ieeexplore.ieee.org/document/726791/
https://arxiv.org/abs/1409.1556
https://keras.io/
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/
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8.8 Summary

In this tutorial, you discovered how to develop a suite of CNN models for a range of standard
time series forecasting problems. Specifically, you learned:

� How to develop CNN models for univariate time series forecasting.

� How to develop CNN models for multivariate time series forecasting.

� How to develop CNN models for multi-step time series forecasting.

8.8.1 Next

In the next lesson, you will discover how to develop Recurrent Neural Network models for time
series forecasting.



Chapter 9

How to Develop LSTMs for Time
Series Forecasting

Long Short-Term Memory networks, or LSTMs for short, can be applied to time series forecasting.
There are many types of LSTM models that can be used for each specific type of time series
forecasting problem. In this tutorial, you will discover how to develop a suite of LSTM models
for a range of standard time series forecasting problems. The objective of this tutorial is to
provide standalone examples of each model on each type of time series problem as a template
that you can copy and adapt for your specific time series forecasting problem.

After completing this tutorial, you will know:

� How to develop LSTM models for univariate time series forecasting.

� How to develop LSTM models for multivariate time series forecasting.

� How to develop LSTM models for multi-step time series forecasting.

Let’s get started.

9.1 Tutorial Overview

In this tutorial, we will explore how to develop a suite of different types of LSTM models for
time series forecasting. The models are demonstrated on small contrived time series problems
intended to give the flavor of the type of time series problem being addressed. The chosen
configuration of the models is arbitrary and not optimized for each problem; that was not the
goal. This tutorial is divided into four parts; they are:

1. Univariate LSTM Models

2. Multivariate LSTM Models

3. Multi-step LSTM Models

4. Multivariate Multi-step LSTM Models

123
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9.2 Univariate LSTM Models

LSTMs can be used to model univariate time series forecasting problems. These are problems
comprised of a single series of observations and a model is required to learn from the series of
past observations to predict the next value in the sequence. We will demonstrate a number of
variations of the LSTM model for univariate time series forecasting. This section is divided into
six parts; they are:

1. Data Preparation

2. Vanilla LSTM

3. Stacked LSTM

4. Bidirectional LSTM

5. CNN-LSTM

6. ConvLSTM

Each of these models are demonstrated for one-step univariate time series forecasting, but
can easily be adapted and used as the input part of a model for other types of time series
forecasting problems.

9.2.1 Data Preparation

Before a univariate series can be modeled, it must be prepared. The LSTM model will learn a
function that maps a sequence of past observations as input to an output observation. As such,
the sequence of observations must be transformed into multiple examples from which the LSTM
can learn. Consider a given univariate sequence:

[10, 20, 30, 40, 50, 60, 70, 80, 90]

Listing 9.1: Example of a univariate time series.

We can divide the sequence into multiple input/output patterns called samples, where three
time steps are used as input and one time step is used as output for the one-step prediction
that is being learned.

X, y

10, 20, 30, 40

20, 30, 40, 50

30, 40, 50, 60

...

Listing 9.2: Example of a univariate time series as a supervised learning problem.

The split sequence() function below implements this behavior and will split a given
univariate sequence into multiple samples where each sample has a specified number of time
steps and the output is a single time step.



9.2. Univariate LSTM Models 125

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 9.3: Example of a function to split a univariate series into a supervised learning problem.

We can demonstrate this function on our small contrived dataset above. The complete
example is listed below.

# univariate data preparation

from numpy import array

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 9.4: Example of transforming a univariate time series into a supervised learning problem.

Running the example splits the univariate series into six samples where each sample has
three input time steps and one output time step.

[10 20 30] 40

[20 30 40] 50

[30 40 50] 60
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[40 50 60] 70

[50 60 70] 80

[60 70 80] 90

Listing 9.5: Example output from transforming a univariate time series into a supervised learning
problem.

Now that we know how to prepare a univariate series for modeling, let’s look at developing
LSTM models that can learn the mapping of inputs to outputs, starting with a Vanilla LSTM.

9.2.2 Vanilla LSTM

A Vanilla LSTM is an LSTM model that has a single hidden layer of LSTM units, and an
output layer used to make a prediction. Key to LSTMs is that they offer native support for
sequences. Unlike a CNN that reads across the entire input vector, the LSTM model reads one
time step of the sequence at a time and builds up an internal state representation that can be
used as a learned context for making a prediction. We can define a Vanilla LSTM for univariate
time series forecasting as follows.

# define model

model = Sequential()

model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Listing 9.6: Example of defining a Vanilla LSTM model.

Key in the definition is the shape of the input; that is what the model expects as input for
each sample in terms of the number of time steps and the number of features. We are working
with a univariate series, so the number of features is one, for one variable. The number of
time steps as input is the number we chose when preparing our dataset as an argument to the
split sequence() function.

The shape of the input for each sample is specified in the input shape argument on the
definition of first hidden layer. We almost always have multiple samples, therefore, the model
will expect the input component of training data to have the dimensions or shape: [samples,
timesteps, features]. Our split sequence() function in the previous section outputs the X
with the shape [samples, timesteps], so we easily reshape it to have an additional dimension
for the one feature.

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

Listing 9.7: Example of reshaping training data for the LSTM.

In this case, we define a model with 50 LSTM units in the hidden layer and an output layer
that predicts a single numerical value. The model is fit using the efficient Adam version of
stochastic gradient descent and optimized using the mean squared error, or ‘mse’ loss function.
Once the model is defined, we can fit it on the training dataset.

# fit model

model.fit(X, y, epochs=200, verbose=0)

Listing 9.8: Example of fitting the LSTM model.
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After the model is fit, we can use it to make a prediction. We can predict the next value
in the sequence by providing the input: [70, 80, 90]. And expecting the model to predict
something like: [100]. The model expects the input shape to be three-dimensional with
[samples, timesteps, features], therefore, we must reshape the single input sample before
making the prediction.

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 9.9: Example of preparing an input sample ready for making an out-of-sample forecast.

We can tie all of this together and demonstrate how to develop a Vanilla LSTM for univariate
time series forecasting and make a single prediction.

# univariate lstm example

from numpy import array

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

# define model

model = Sequential()

model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=200, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps, n_features))
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yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.10: Example of a Vanilla LSTM for univariate time series forecasting.

Running the example prepares the data, fits the model, and makes a prediction. We can see
that the model predicts the next value in the sequence.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[102.09213]]

Listing 9.11: Example output from a Vanilla LSTM for univariate time series forecasting.

9.2.3 Stacked LSTM

Multiple hidden LSTM layers can be stacked one on top of another in what is referred to as
a Stacked LSTM model. An LSTM layer requires a three-dimensional input and LSTMs by
default will produce a two-dimensional output as an interpretation from the end of the sequence.
We can address this by having the LSTM output a value for each time step in the input data by
setting the return sequences=True argument on the layer. This allows us to have 3D output
from hidden LSTM layer as input to the next. We can therefore define a Stacked LSTM as
follows.

# define model

model = Sequential()

model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(n_steps,

n_features)))

model.add(LSTM(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Listing 9.12: Example of defining a Stacked LSTM model.

We can tie this together; the complete code example is listed below.

# univariate stacked lstm example

from numpy import array

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

# split a univariate sequence

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
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X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

# define model

model = Sequential()

model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(n_steps,

n_features)))

model.add(LSTM(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=200, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.13: Example of a Stacked LSTM for univariate time series forecasting.

Running the example predicts the next value in the sequence, which we expect would be 100.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[102.47341]]

Listing 9.14: Example output from a Stacked LSTM for univariate time series forecasting.

9.2.4 Bidirectional LSTM

On some sequence prediction problems, it can be beneficial to allow the LSTM model to learn
the input sequence both forward and backwards and concatenate both interpretations. This
is called a Bidirectional LSTM. We can implement a Bidirectional LSTM for univariate time
series forecasting by wrapping the first hidden layer in a wrapper layer called Bidirectional.
An example of defining a Bidirectional LSTM to read input both forward and backward is as
follows.

# define model

model = Sequential()

model.add(Bidirectional(LSTM(50, activation='relu'), input_shape=(n_steps, n_features)))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Listing 9.15: Example of defining a Bidirectional LSTM model.
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The complete example of the Bidirectional LSTM for univariate time series forecasting is
listed below.

# univariate bidirectional lstm example

from numpy import array

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import Bidirectional

# split a univariate sequence

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 3

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

# define model

model = Sequential()

model.add(Bidirectional(LSTM(50, activation='relu'), input_shape=(n_steps, n_features)))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=200, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.16: Example of a Bidirectional LSTM for univariate time series forecasting.

Running the example predicts the next value in the sequence, which we expect would be 100.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[101.48093]]

Listing 9.17: Example output from a Bidirectional LSTM for univariate time series forecasting.
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9.2.5 CNN-LSTM

A convolutional neural network, or CNN for short, is a type of neural network developed for
working with two-dimensional image data. The CNN can be very effective at automatically
extracting and learning features from one-dimensional sequence data such as univariate time
series data. A CNN model can be used in a hybrid model with an LSTM backend where the
CNN is used to interpret subsequences of input that together are provided as a sequence to an
LSTM model to interpret. This hybrid model is called a CNN-LSTM.

The first step is to split the input sequences into subsequences that can be processed by the
CNN model. For example, we can first split our univariate time series data into input/output
samples with four steps as input and one as output. Each sample can then be split into two
sub-samples, each with two time steps. The CNN can interpret each subsequence of two time
steps and provide a time series of interpretations of the subsequences to the LSTM model
to process as input. We can parameterize this and define the number of subsequences as
n seq and the number of time steps per subsequence as n steps. The input data can then be
reshaped to have the required structure: [samples, subsequences, timesteps, features].
For example:

# choose a number of time steps

n_steps = 4

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, subsequences, timesteps, features]

n_features = 1

n_seq = 2

n_steps = 2

X = X.reshape((X.shape[0], n_seq, n_steps, n_features))

Listing 9.18: Example of reshaping data for a CNN-LSTM model.

We want to reuse the same CNN model when reading in each sub-sequence of data separately.
This can be achieved by wrapping the entire CNN model in a TimeDistributed wrapper that
will apply the entire model once per input, in this case, once per input subsequence. The CNN
model first has a convolutional layer for reading across the subsequence that requires a number
of filters and a kernel size to be specified. The number of filters is the number of reads or
interpretations of the input sequence. The kernel size is the number of time steps included of
each read operation of the input sequence. The convolution layer is followed by a max pooling
layer that distills the filter maps down to 1

4
of their size that includes the most salient features.

These structures are then flattened down to a single one-dimensional vector to be used as a
single input time step to the LSTM layer.

# define the input cnn model

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=1, activation='relu'),

input_shape=(None, n_steps, n_features)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

Listing 9.19: Example of defining the CNN input model.

Next, we can define the LSTM part of the model that interprets the CNN model’s read of
the input sequence and makes a prediction.

# define the output model
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model.add(LSTM(50, activation='relu'))

model.add(Dense(1))

Listing 9.20: Example of defining the LSTM output model.

We can tie all of this together; the complete example of a CNN-LSTM model for univariate
time series forecasting is listed below.

# univariate cnn lstm example

from numpy import array

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import TimeDistributed

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 4

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, subsequences, timesteps, features]

n_features = 1

n_seq = 2

n_steps = 2

X = X.reshape((X.shape[0], n_seq, n_steps, n_features))

# define model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=1, activation='relu'),

input_shape=(None, n_steps, n_features)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=500, verbose=0)

# demonstrate prediction

x_input = array([60, 70, 80, 90])



9.2. Univariate LSTM Models 133

x_input = x_input.reshape((1, n_seq, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.21: Example of a CNN-LSTM for univariate time series forecasting.

Running the example predicts the next value in the sequence, which we expect would be 100.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[101.69263]]

Listing 9.22: Example output from a CNN-LSTM for univariate time series forecasting.

9.2.6 ConvLSTM

A type of LSTM related to the CNN-LSTM is the ConvLSTM, where the convolutional reading
of input is built directly into each LSTM unit. The ConvLSTM was developed for reading
two-dimensional spatial-temporal data, but can be adapted for use with univariate time series
forecasting. The layer expects input as a sequence of two-dimensional images, therefore the
shape of input data must be: [samples, timesteps, rows, columns, features].

For our purposes, we can split each sample into subsequences where timesteps will become
the number of subsequences, or n seq, and columns will be the number of time steps for
each subsequence, or n steps. The number of rows is fixed at 1 as we are working with
one-dimensional data. We can now reshape the prepared samples into the required structure.

# choose a number of time steps

n_steps = 4

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, timesteps, rows, columns, features]

n_features = 1

n_seq = 2

n_steps = 2

X = X.reshape((X.shape[0], n_seq, 1, n_steps, n_features))

Listing 9.23: Example of reshaping data for a ConvLSTM model.

We can define the ConvLSTM as a single layer in terms of the number of filters and a two-
dimensional kernel size in terms of (rows, columns). As we are working with a one-dimensional
series, the number of rows is always fixed to 1 in the kernel. The output of the model must
then be flattened before it can be interpreted and a prediction made.

# define the input cnnlstm model

model.add(ConvLSTM2D(filters=64, kernel_size=(1,2), activation='relu', input_shape=(n_seq,

1, n_steps, n_features)))

model.add(Flatten())

Listing 9.24: Example of defining the ConvLSTM input model.

The complete example of a ConvLSTM for one-step univariate time series forecasting is
listed below.
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# univariate convlstm example

from numpy import array

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import ConvLSTM2D

# split a univariate sequence into samples

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps = 4

# split into samples

X, y = split_sequence(raw_seq, n_steps)

# reshape from [samples, timesteps] into [samples, timesteps, rows, columns, features]

n_features = 1

n_seq = 2

n_steps = 2

X = X.reshape((X.shape[0], n_seq, 1, n_steps, n_features))

# define model

model = Sequential()

model.add(ConvLSTM2D(filters=64, kernel_size=(1,2), activation='relu', input_shape=(n_seq,

1, n_steps, n_features)))

model.add(Flatten())

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=500, verbose=0)

# demonstrate prediction

x_input = array([60, 70, 80, 90])

x_input = x_input.reshape((1, n_seq, 1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.25: Example of a ConvLSTM for univariate time series forecasting.

Running the example predicts the next value in the sequence, which we expect would be 100.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.
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[[103.68166]]

Listing 9.26: Example output from a ConvLSTM for univariate time series forecasting.

For an example of an LSTM applied to a real-world univariate time series forecasting problem
see Chapter 14. For an example of grid searching LSTM hyperparameters on a univariate time
series forecasting problem, see Chapter 15. Now that we have looked at LSTM models for
univariate data, let’s turn our attention to multivariate data.

9.3 Multivariate LSTM Models

Multivariate time series data means data where there is more than one observation for each
time step. There are two main models that we may require with multivariate time series data;
they are:

1. Multiple Input Series.

2. Multiple Parallel Series.

Let’s take a look at each in turn.

9.3.1 Multiple Input Series

A problem may have two or more parallel input time series and an output time series that is
dependent on the input time series. The input time series are parallel because each series has
an observation at the same time steps. We can demonstrate this with a simple example of two
parallel input time series where the output series is the simple addition of the input series.

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

Listing 9.27: Example of defining multiple input and a dependent time series.

We can reshape these three arrays of data as a single dataset where each row is a time step,
and each column is a separate time series. This is a standard way of storing parallel time series
in a CSV file.

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

Listing 9.28: Example of reshaping the parallel series into the columns of a dataset.

The complete example is listed below.



9.3. Multivariate LSTM Models 136

# multivariate data preparation

from numpy import array

from numpy import hstack

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

print(dataset)

Listing 9.29: Example of defining a dependent series dataset.

Running the example prints the dataset with one row per time step and one column for each
of the two input and one output parallel time series.

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 9.30: Example output from defining a dependent series dataset.

As with the univariate time series, we must structure these data into samples with input
and output elements. An LSTM model needs sufficient context to learn a mapping from an
input sequence to an output value. LSTMs can support parallel input time series as separate
variables or features. Therefore, we need to split the data into samples maintaining the order of
observations across the two input sequences. If we chose three input time steps, then the first
sample would look as follows:

Input:

10, 15

20, 25

30, 35

Listing 9.31: Example input from the first sample.

Output:

65

Listing 9.32: Example Output from the first sample.

That is, the first three time steps of each parallel series are provided as input to the model
and the model associates this with the value in the output series at the third time step, in this
case, 65. We can see that, in transforming the time series into input/output samples to train
the model, that we will have to discard some values from the output time series where we do
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not have values in the input time series at prior time steps. In turn, the choice of the size of
the number of input time steps will have an important effect on how much of the training data
is used. We can define a function named split sequences() that will take a dataset as we
have defined it with rows for time steps and columns for parallel series and return input/output
samples.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 9.33: Example of a function for transforming a dependent series dataset into samples.

We can test this function on our dataset using three time steps for each input time series as
input. The complete example is listed below.

# multivariate data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps
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n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 9.34: Example of splitting a dependent series dataset into samples.

Running the example first prints the shape of the X and y components. We can see that
the X component has a three-dimensional structure. The first dimension is the number of
samples, in this case 7. The second dimension is the number of time steps per sample, in this
case 3, the value specified to the function. Finally, the last dimension specifies the number of
parallel time series or the number of variables, in this case 2 for the two parallel series. This is
the exact three-dimensional structure expected by an LSTM as input. The data is ready to
use without further reshaping. We can then see that the input and output for each sample is
printed, showing the three time steps for each of the two input series and the associated output
for each sample.

(7, 3, 2) (7,)

[[10 15]

[20 25]

[30 35]] 65

[[20 25]

[30 35]

[40 45]] 85

[[30 35]

[40 45]

[50 55]] 105

[[40 45]

[50 55]

[60 65]] 125

[[50 55]

[60 65]

[70 75]] 145

[[60 65]

[70 75]

[80 85]] 165

[[70 75]

[80 85]

[90 95]] 185

Listing 9.35: Example output from splitting a dependent series dataset into samples.

We are now ready to fit an LSTM model on this data. Any of the varieties of LSTMs in the
previous section can be used, such as a Vanilla, Stacked, Bidirectional, CNN, or ConvLSTM
model. We will use a Vanilla LSTM where the number of time steps and parallel series (features)
are specified for the input layer via the input shape argument.

# define model

model = Sequential()

model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))

model.add(Dense(1))
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model.compile(optimizer='adam', loss='mse')

Listing 9.36: Example of defining a Vanilla LSTM for modeling a dependent series.

When making a prediction, the model expects three time steps for two input time series.
We can predict the next value in the output series providing the input values of:

80, 85

90, 95

100, 105

Listing 9.37: Example input for making an out-of-sample forecast.

The shape of the one sample with three time steps and two variables must be [1, 3, 2].
We would expect the next value in the sequence to be 100 + 105, or 205.

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 9.38: Example of making an out-of-sample forecast.

The complete example is listed below.

# multivariate lstm example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps
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n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# define model

model = Sequential()

model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=200, verbose=0)

# demonstrate prediction

x_input = array([[80, 85], [90, 95], [100, 105]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.39: Example of a Vanilla LSTM for multivariate dependent time series forecasting.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[208.13531]]

Listing 9.40: Example output from a Vanilla LSTM for multivariate dependent time series
forecasting.

For an example of LSTM models developed for a multivariate time series classification
problem, see Chapter 25.

9.3.2 Multiple Parallel Series

An alternate time series problem is the case where there are multiple parallel time series and a
value must be predicted for each. For example, given the data from the previous section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 9.41: Example of a multivariate parallel time series.

We may want to predict the value for each of the three time series for the next time step. This
might be referred to as multivariate forecasting. Again, the data must be split into input/output
samples in order to train a model. The first sample of this dataset would be:

Input:
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10, 15, 25

20, 25, 45

30, 35, 65

Listing 9.42: Example input from the first sample.

Output:

40, 45, 85

Listing 9.43: Example output from the first sample.

The split sequences() function below will split multiple parallel time series with rows for
time steps and one series per column into the required input/output shape.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 9.44: Example of a function for splitting parallel series into samples.

We can demonstrate this on the contrived problem; the complete example is listed below.

# multivariate output data prep

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])
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# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 9.45: Example of splitting a multivariate parallel time series onto samples.

Running the example first prints the shape of the prepared X and y components. The
shape of X is three-dimensional, including the number of samples (6), the number of time steps
chosen per sample (3), and the number of parallel time series or features (3). The shape of y
is two-dimensional as we might expect for the number of samples (6) and the number of time
variables per sample to be predicted (3). The data is ready to use in an LSTM model that
expects three-dimensional input and two-dimensional output shapes for the X and y components
of each sample. Then, each of the samples is printed showing the input and output components
of each sample.

(6, 3, 3) (6, 3)

[[10 15 25]

[20 25 45]

[30 35 65]] [40 45 85]

[[20 25 45]

[30 35 65]

[40 45 85]] [ 50 55 105]

[[ 30 35 65]

[ 40 45 85]

[ 50 55 105]] [ 60 65 125]

[[ 40 45 85]

[ 50 55 105]

[ 60 65 125]] [ 70 75 145]

[[ 50 55 105]

[ 60 65 125]

[ 70 75 145]] [ 80 85 165]

[[ 60 65 125]

[ 70 75 145]

[ 80 85 165]] [ 90 95 185]

Listing 9.46: Example output from splitting a multivariate parallel time series onto samples.

We are now ready to fit an LSTM model on this data. Any of the varieties of LSTMs in the
previous section can be used, such as a Vanilla, Stacked, Bidirectional, CNN, or ConvLSTM
model. We will use a Stacked LSTM where the number of time steps and parallel series (features)
are specified for the input layer via the input shape argument. The number of parallel series is
also used in the specification of the number of values to predict by the model in the output
layer; again, this is three.
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# define model

model = Sequential()

model.add(LSTM(100, activation='relu', return_sequences=True, input_shape=(n_steps,

n_features)))

model.add(LSTM(100, activation='relu'))

model.add(Dense(n_features))

model.compile(optimizer='adam', loss='mse')

Listing 9.47: Example of defining a Stacked LSTM for parallel time series forecasting.

We can predict the next value in each of the three parallel series by providing an input of
three time steps for each series.

70, 75, 145

80, 85, 165

90, 95, 185

Listing 9.48: Example input for making an out-of-sample forecast.

The shape of the input for making a single prediction must be 1 sample, 3 time steps, and 3
features, or [1, 3, 3].

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 9.49: Example of reshaping a sample for making an out-of-sample forecast.

We would expect the vector output to be:

[100, 105, 205]

Listing 9.50: Example output for an out-of-sample forecast.

We can tie all of this together and demonstrate a Stacked LSTM for multivariate output
time series forecasting below.

# multivariate output stacked lstm example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the dataset

if end_ix > len(sequences)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix, :]

X.append(seq_x)

y.append(seq_y)
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return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps = 3

# convert into input/output

X, y = split_sequences(dataset, n_steps)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# define model

model = Sequential()

model.add(LSTM(100, activation='relu', return_sequences=True, input_shape=(n_steps,

n_features)))

model.add(LSTM(100, activation='relu'))

model.add(Dense(n_features))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=400, verbose=0)

# demonstrate prediction

x_input = array([[70,75,145], [80,85,165], [90,95,185]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.51: Example of a Stacked LSTM for multivariate parallel time series forecasting.

Running the example prepares the data, fits the model, and makes a prediction.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[101.76599 108.730484 206.63577 ]]

Listing 9.52: Example output from a Stacked LSTM for multivariate parallel time series
forecasting.

For an example of LSTM models developed for a multivariate time series forecasting problem,
see Chapter 20.

9.4 Multi-step LSTM Models

A time series forecasting problem that requires a prediction of multiple time steps into the
future can be referred to as multi-step time series forecasting. Specifically, these are problems
where the forecast horizon or interval is more than one time step. There are two main types of
LSTM models that can be used for multi-step forecasting; they are:
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1. Vector Output Model

2. Encoder-Decoder Model

Before we look at these models, let’s first look at the preparation of data for multi-step
forecasting.

9.4.1 Data Preparation

As with one-step forecasting, a time series used for multi-step time series forecasting must be
split into samples with input and output components. Both the input and output components
will be comprised of multiple time steps and may or may not have the same number of steps.
For example, given the univariate time series:

[10, 20, 30, 40, 50, 60, 70, 80, 90]

Listing 9.53: Example of a univariate time series.

We could use the last three time steps as input and forecast the next two time steps. The
first sample would look as follows:

Input:

[10, 20, 30]

Listing 9.54: Example input from the first sample.

Output:

[40, 50]

Listing 9.55: Example output from the first sample.

The split sequence() function below implements this behavior and will split a given
univariate time series into samples with a specified number of input and output time steps.

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 9.56: Example of a function for splitting a univariate series into samples for multi-step
forecasting.

We can demonstrate this function on the small contrived dataset. The complete example is
listed below.
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# multi-step data preparation

from numpy import array

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# split into samples

X, y = split_sequence(raw_seq, n_steps_in, n_steps_out)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 9.57: Example of splitting a univariate series for multi-step forecasting into samples.

Running the example splits the univariate series into input and output time steps and prints
the input and output components of each.

[10 20 30] [40 50]

[20 30 40] [50 60]

[30 40 50] [60 70]

[40 50 60] [70 80]

[50 60 70] [80 90]

Listing 9.58: Example output from splitting a univariate series for multi-step forecasting into
samples.

Now that we know how to prepare data for multi-step forecasting, let’s look at some LSTM
models that can learn this mapping.

9.4.2 Vector Output Model

Like other types of neural network models, the LSTM can output a vector directly that can
be interpreted as a multi-step forecast. This approach was seen in the previous section were
one time step of each output time series was forecasted as a vector. As with the LSTMs for
univariate data in a prior section, the prepared samples must first be reshaped. The LSTM
expects data to have a three-dimensional structure of [samples, timesteps, features], and
in this case, we only have one feature so the reshape is straightforward.
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# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

Listing 9.59: Example of preparing data for fitting an LSTM model.

With the number of input and output steps specified in the n steps in and n steps out

variables, we can define a multi-step time-series forecasting model. Any of the presented LSTM
model types could be used, such as Vanilla, Stacked, Bidirectional, CNN-LSTM, or ConvLSTM.
Below defines a Stacked LSTM for multi-step forecasting.

# define model

model = Sequential()

model.add(LSTM(100, activation='relu', return_sequences=True, input_shape=(n_steps_in,

n_features)))

model.add(LSTM(100, activation='relu'))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

Listing 9.60: Example of defining a Stacked LSTM for multi-step forecasting.

The model can make a prediction for a single sample. We can predict the next two steps
beyond the end of the dataset by providing the input:

[70, 80, 90]

Listing 9.61: Example input for making an out-of-sample forecast.

We would expect the predicted output to be:

[100, 110]

Listing 9.62: Expected output for making an out-of-sample forecast.

As expected by the model, the shape of the single sample of input data when making the
prediction must be [1, 3, 1] for the 1 sample, 3 time steps of the input, and the single feature.

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

Listing 9.63: Example of preparing a sample for making an out-of-sample forecast.

Tying all of this together, the Stacked LSTM for multi-step forecasting with a univariate
time series is listed below.

# univariate multi-step vector-output stacked lstm example

from numpy import array

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern
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end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# split into samples

X, y = split_sequence(raw_seq, n_steps_in, n_steps_out)

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

# define model

model = Sequential()

model.add(LSTM(100, activation='relu', return_sequences=True, input_shape=(n_steps_in,

n_features)))

model.add(LSTM(100, activation='relu'))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=50, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.64: Example of a Stacked LSTM for multi-step time series forecasting.

Running the example forecasts and prints the next two time steps in the sequence.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[100.98096 113.28924]]

Listing 9.65: Example output from a Stacked LSTM for multi-step time series forecasting.

9.4.3 Encoder-Decoder Model

A model specifically developed for forecasting variable length output sequences is called the
Encoder-Decoder LSTM. The model was designed for prediction problems where there are
both input and output sequences, so-called sequence-to-sequence, or seq2seq problems, such
as translating text from one language to another. This model can be used for multi-step time
series forecasting. As its name suggests, the model is comprised of two sub-models: the encoder
and the decoder.
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The encoder is a model responsible for reading and interpreting the input sequence. The
output of the encoder is a fixed length vector that represents the model’s interpretation of the
sequence. The encoder is traditionally a Vanilla LSTM model, although other encoder models
can be used such as Stacked, Bidirectional, and CNN models.

# define encoder model

model.add(LSTM(100, activation='relu', input_shape=(n_steps_in, n_features)))

Listing 9.66: Example of defining the encoder input model.

The decoder uses the output of the encoder as an input. First, the fixed-length output of
the encoder is repeated, once for each required time step in the output sequence.

# repeat encoding

model.add(RepeatVector(n_steps_out))

Listing 9.67: Example of repeating the encoded vector.

This sequence is then provided to an LSTM decoder model. The model must output a value
for each value in the output time step, which can be interpreted by a single output model.

# define decoder model

model.add(LSTM(100, activation='relu', return_sequences=True))

Listing 9.68: Example of defining the decoder model.

We can use the same output layer or layers to make each one-step prediction in the output
sequence. This can be achieved by wrapping the output part of the model in a TimeDistributed

wrapper.

# define model output

model.add(TimeDistributed(Dense(1)))

Listing 9.69: Example of defining the output model.

The full definition for an Encoder-Decoder model for multi-step time series forecasting is
listed below.

# define model

model = Sequential()

model.add(LSTM(100, activation='relu', input_shape=(n_steps_in, n_features)))

model.add(RepeatVector(n_steps_out))

model.add(LSTM(100, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(1)))

model.compile(optimizer='adam', loss='mse')

Listing 9.70: Example of defining an Encoder-Decoder LSTM for multi-step forecasting.

As with other LSTM models, the input data must be reshaped into the expected three-
dimensional shape of [samples, timesteps, features].

# reshape input training data

X = X.reshape((X.shape[0], X.shape[1], n_features))

Listing 9.71: Example of reshaping input samples for training the Encoder-Decoder LSTM.

In the case of the Encoder-Decoder model, the output, or y part, of the training dataset
must also have this shape. This is because the model will predict a given number of time steps
with a given number of features for each input sample.
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# reshape output training data

y = y.reshape((y.shape[0], y.shape[1], n_features))

Listing 9.72: Example of reshaping output samples for training the Encoder-Decoder LSTM.

The complete example of an Encoder-Decoder LSTM for multi-step time series forecasting
is listed below.

# univariate multi-step encoder-decoder lstm example

from numpy import array

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import RepeatVector

from keras.layers import TimeDistributed

# split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequence)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the sequence

if out_end_ix > len(sequence):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# split into samples

X, y = split_sequence(raw_seq, n_steps_in, n_steps_out)

# reshape from [samples, timesteps] into [samples, timesteps, features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

y = y.reshape((y.shape[0], y.shape[1], n_features))

# define model

model = Sequential()

model.add(LSTM(100, activation='relu', input_shape=(n_steps_in, n_features)))

model.add(RepeatVector(n_steps_out))

model.add(LSTM(100, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(1)))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=100, verbose=0)

# demonstrate prediction

x_input = array([70, 80, 90])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)
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Listing 9.73: Example of an Encoder-Decoder LSTM for multi-step time series forecasting.

Running the example forecasts and prints the next two time steps in the sequence.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[[101.9736

[116.213615]]]

Listing 9.74: Example output from an Encoder-Decoder LSTM for multi-step time series
forecasting.

For an example of LSTM models developed for a multi-step time series forecasting problem,
see Chapter 20.

9.5 Multivariate Multi-step LSTM Models

In the previous sections, we have looked at univariate, multivariate, and multi-step time series
forecasting. It is possible to mix and match the different types of LSTM models presented so
far for the different problems. This too applies to time series forecasting problems that involve
multivariate and multi-step forecasting, but it may be a little more challenging. In this section,
we will provide short examples of data preparation and modeling for multivariate multi-step
time series forecasting as a template to ease this challenge, specifically:

1. Multiple Input Multi-step Output.

2. Multiple Parallel Input and Multi-step Output.

Perhaps the biggest stumbling block is in the preparation of data, so this is where we will
focus our attention.

9.5.1 Multiple Input Multi-step Output

There are those multivariate time series forecasting problems where the output series is separate
but dependent upon the input time series, and multiple time steps are required for the output
series. For example, consider our multivariate time series from a prior section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 9.75: Example of a multivariate dependent time series.
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We may use three prior time steps of each of the two input time series to predict two time
steps of the output time series.

Input:

10, 15

20, 25

30, 35

Listing 9.76: Example of input from the first sample.

Output:

65

85

Listing 9.77: Example of output from the first sample.

The split sequences() function below implements this behavior.

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 9.78: Example of a function for splitting a dependent series for multi-step forecasting
into samples.

We can demonstrate this on our contrived dataset. The complete example is listed below.

# multivariate multi-step data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)
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return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# covert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 9.79: Example splitting a parallel series for multi-step forecasting into samples.

Running the example first prints the shape of the prepared training data. We can see that
the shape of the input portion of the samples is three-dimensional, comprised of six samples,
with three time steps, and two variables for the 2 input time series. The output portion of the
samples is two-dimensional for the six samples and the two time steps for each sample to be
predicted. The prepared samples are then printed to confirm that the data was prepared as we
specified.

(6, 3, 2) (6, 2)

[[10 15]

[20 25]

[30 35]] [65 85]

[[20 25]

[30 35]

[40 45]] [ 85 105]

[[30 35]

[40 45]

[50 55]] [105 125]

[[40 45]

[50 55]

[60 65]] [125 145]

[[50 55]

[60 65]

[70 75]] [145 165]

[[60 65]

[70 75]

[80 85]] [165 185]

Listing 9.80: Example output from splitting a parallel series for multi-step forecasting into
samples.

We can now develop an LSTM model for multi-step predictions. A vector output or an
encoder-decoder model could be used. In this case, we will demonstrate a vector output with a
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Stacked LSTM. The complete example is listed below.

# multivariate multi-step stacked lstm example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out-1

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# covert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# define model

model = Sequential()

model.add(LSTM(100, activation='relu', return_sequences=True, input_shape=(n_steps_in,

n_features)))

model.add(LSTM(100, activation='relu'))

model.add(Dense(n_steps_out))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=200, verbose=0)

# demonstrate prediction

x_input = array([[70, 75], [80, 85], [90, 95]])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)
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Listing 9.81: Example of an Stacked LSTM for multi-step forecasting for a dependent series.

Running the example fits the model and predicts the next two time steps of the output
sequence beyond the dataset. We would expect the next two steps to be: [185, 205]. It is a
challenging framing of the problem with very little data, and the arbitrarily configured version
of the model gets close.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

[[188.70619 210.16513]]

Listing 9.82: Example output from an Stacked LSTM for multi-step forecasting for a dependent
series.

9.5.2 Multiple Parallel Input and Multi-step Output

A problem with parallel time series may require the prediction of multiple time steps of each
time series. For example, consider our multivariate time series from a prior section:

[[ 10 15 25]

[ 20 25 45]

[ 30 35 65]

[ 40 45 85]

[ 50 55 105]

[ 60 65 125]

[ 70 75 145]

[ 80 85 165]

[ 90 95 185]]

Listing 9.83: Example of a multivariate parallel time series dataset.

We may use the last three time steps from each of the three time series as input to the model
and predict the next time steps of each of the three time series as output. The first sample in
the training dataset would be the following.

Input:

10, 15, 25

20, 25, 45

30, 35, 65

Listing 9.84: Example of input from the first sample.

Output:

40, 45, 85

50, 55, 105

Listing 9.85: Example of output from the first sample.

The split sequences() function below implements this behavior.
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# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

Listing 9.86: Example of a function for splitting a parallel dataset for multi-step forecasting
into samples.

We can demonstrate this function on the small contrived dataset. The complete example is
listed below.

# multivariate multi-step data preparation

from numpy import array

from numpy import hstack

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern

end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# covert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)
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print(X.shape, y.shape)

# summarize the data

for i in range(len(X)):

print(X[i], y[i])

Listing 9.87: Example splitting a parallel series for multi-step forecasting into samples.

Running the example first prints the shape of the prepared training dataset. We can see
that both the input (X) and output (Y ) elements of the dataset are three dimensional for the
number of samples, time steps, and variables or parallel time series respectively. The input and
output elements of each series are then printed side by side so that we can confirm that the
data was prepared as we expected.

(5, 3, 3) (5, 2, 3)

[[10 15 25]

[20 25 45]

[30 35 65]] [[ 40 45 85]

[ 50 55 105]]

[[20 25 45]

[30 35 65]

[40 45 85]] [[ 50 55 105]

[ 60 65 125]]

[[ 30 35 65]

[ 40 45 85]

[ 50 55 105]] [[ 60 65 125]

[ 70 75 145]]

[[ 40 45 85]

[ 50 55 105]

[ 60 65 125]] [[ 70 75 145]

[ 80 85 165]]

[[ 50 55 105]

[ 60 65 125]

[ 70 75 145]] [[ 80 85 165]

[ 90 95 185]]

Listing 9.88: Example output from splitting a parallel series for multi-step forecasting into
samples.

We can use either the Vector Output or Encoder-Decoder LSTM to model this problem. In
this case, we will use the Encoder-Decoder model. The complete example is listed below.

# multivariate multi-step encoder-decoder lstm example

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import RepeatVector

from keras.layers import TimeDistributed

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps_in, n_steps_out):

X, y = list(), list()

for i in range(len(sequences)):

# find the end of this pattern
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end_ix = i + n_steps_in

out_end_ix = end_ix + n_steps_out

# check if we are beyond the dataset

if out_end_ix > len(sequences):

break

# gather input and output parts of the pattern

seq_x, seq_y = sequences[i:end_ix, :], sequences[end_ix:out_end_ix, :]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90])

in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_seq1))])

# convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# choose a number of time steps

n_steps_in, n_steps_out = 3, 2

# covert into input/output

X, y = split_sequences(dataset, n_steps_in, n_steps_out)

# the dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# define model

model = Sequential()

model.add(LSTM(200, activation='relu', input_shape=(n_steps_in, n_features)))

model.add(RepeatVector(n_steps_out))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(n_features)))

model.compile(optimizer='adam', loss='mse')

# fit model

model.fit(X, y, epochs=300, verbose=0)

# demonstrate prediction

x_input = array([[60, 65, 125], [70, 75, 145], [80, 85, 165]])

x_input = x_input.reshape((1, n_steps_in, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Listing 9.89: Example of an Encoder-Decoder LSTM for multi-step forecasting for parallel series.

Running the example fits the model and predicts the values for each of the three time steps
for the next two time steps beyond the end of the dataset. We would expect the values for these
series and time steps to be as follows:

90, 95, 185

100, 105, 205

Listing 9.90: Expected output for an out-of-sample forecast.

We can see that the model forecast gets reasonably close to the expected values.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.
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[[[ 91.86044 97.77231 189.66768 ]

[103.299355 109.18123 212.6863 ]]]

Listing 9.91: Example output from an Encoder-Decoder Output LSTM for multi-step forecasting
for parallel series.

For an example of LSTM models developed for a multivariate multi-step time series forecasting
problem, see Chapter 20.

9.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Problem Differences. Explain the main changes to the LSTM required when modeling
each of univariate, multivariate and multi-step time series forecasting problems.

� Experiment. Select one example and modify it to work with your own small contrived
dataset.

� Develop Framework. Use the examples in this chapter as the basis for a framework for
automatically developing an LSTM model for a given time series forecasting problem.

If you explore any of these extensions, I’d love to know.

9.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

9.7.1 Books

� Deep Learning, 2016.
https://amzn.to/2MQyLVZ

� Deep Learning with Python, 2017.
https://amzn.to/2vMRiMe

9.7.2 Papers

� Long Short-Term Memory, 1997.
https://ieeexplore.ieee.org/document/6795963/.

� Learning to Forget: Continual Prediction with LSTM, 1999.
https://ieeexplore.ieee.org/document/818041/

� Recurrent Nets that Time and Count, 2000.
https://ieeexplore.ieee.org/document/861302/

� LSTM: A Search Space Odyssey, 2017.
https://arxiv.org/abs/1503.04069

https://amzn.to/2MQyLVZ
https://amzn.to/2vMRiMe
https://ieeexplore.ieee.org/document/6795963/
https://ieeexplore.ieee.org/document/818041/
https://ieeexplore.ieee.org/document/861302/
https://arxiv.org/abs/1503.04069


9.8. Summary 160

� Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,
2015.
https://arxiv.org/abs/1506.04214v1

9.7.3 APIs

� Keras: The Python Deep Learning library.
https://keras.io/

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Getting started with the Keras functional API.
https://keras.io/getting-started/functional-api-guide/

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

9.8 Summary

In this tutorial, you discovered how to develop a suite of LSTM models for a range of standard
time series forecasting problems. Specifically, you learned:

� How to develop LSTM models for univariate time series forecasting.

� How to develop LSTM models for multivariate time series forecasting.

� How to develop LSTM models for multi-step time series forecasting.

9.8.1 Next

This is the final lesson of this part, the next part will focus on systematically developing models
for univariate time series forecasting problems.

https://arxiv.org/abs/1506.04214v1
https://keras.io/
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/recurrent/
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Univariate Forecasting
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Overview

This part highlights that classical methods are known to out-perform more sophisticated methods
on univariate time series forecasting problems on average and how to systematically evaluate
classical and deep learning methods to ensure that you are getting the most out of them on
your forecasting problem. As such, the chapters in this section focus on providing you the tools
for grid searching classical and deep learning methods and demonstrating these tools on a suite
of standard univariate datasets. After reading the chapters in this part, you will know:

� The results of a recent and reasonably conclusive study that classical methods out-perform
machine learning and deep learning methods for univariate time series forecasting problems
on average (Chapter 10).

� How to develop and grid search a suite of naive forecasting methods for univariate time
series, the results of which can be used as a baseline for determining whether a model has
skill (Chapter 11).

� How to develop and grid search exponential smoothing forecasting models, also known as
ETS, for univariate time series forecasting problems (Chapter 12).

� How to develop and grid search Seasonal ARIMA models or SARIMA for univariate time
series forecasting problems (Chapter 13).

� How to develop and evaluate MLP, CNN and LSTM deep learning models for univariate
time series forecasting (Chapter 14).

� How to grid search the hyperparameters for MLP, CNN and LSTM deep learning models
for univariate time series forecasting (Chapter 15).
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Chapter 10

Review of Top Methods For Univariate
Time Series Forecasting

Machine learning and deep learning methods are often reported to be the key solution to
all predictive modeling problems. An important recent study evaluated and compared the
performance of many classical and modern machine learning and deep learning methods on a
large and diverse set of more than 1,000 univariate time series forecasting problems. The results
of this study suggest that simple classical methods, such as linear methods and exponential
smoothing, outperform complex and sophisticated methods, such as decision trees, Multilayer
Perceptrons (MLP), and Long Short-Term Memory (LSTM) network models. These findings
highlight the requirement to both evaluate classical methods and use their results as a baseline
when evaluating any machine learning and deep learning methods for time series forecasting in
order to demonstrate that their added complexity is adding skill to the forecast.

In this tutorial, you will discover the important findings of this recent study evaluating and
comparing the performance of a classical and modern machine learning methods on a large and
diverse set of time series forecasting datasets. After reading this tutorial, you will know:

� Classical methods like ETS and ARIMA out-perform machine learning and deep learning
methods for one-step forecasting on univariate datasets.

� Classical methods like Theta and ARIMA out-perform machine learning and deep learning
methods for multi-step forecasting on univariate datasets.

� Machine learning and deep learning methods do not yet deliver on their promise for
univariate time series forecasting, and there is much work to do.

Let’s get started.

10.1 Overview

Spyros Makridakis, et al. published a study in 2018 titled Statistical and Machine Learning
forecasting methods: Concerns and ways forward. In this tutorial, we will take a close look at
the study by Makridakis, et al. that carefully evaluated and compared classical time series
forecasting methods to the performance of modern machine learning methods. This tutorial is
divided into seven sections; they are:
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1. Study Motivation

2. Time Series Datasets

3. Time Series Forecasting Methods

4. Data Preparation

5. One-step Forecasting Results

6. Multi-step Forecasting Results

7. Outcomes

10.2 Study Motivation

The goal of the study was to clearly demonstrate the capability of a suite of different machine
learning methods as compared to classical time series forecasting methods on a very large and
diverse collection of univariate time series forecasting problems. The study was a response to
the increasing number of papers and claims that machine learning and deep learning methods
offer superior results for time series forecasting with little objective evidence.

Literally hundreds of papers propose new ML algorithms, suggesting methodological
advances and accuracy improvements. Yet, limited objective evidence is available
regarding their relative performance as a standard forecasting tool.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

The authors clearly lay out three issues with the flood of claims; they are:

� Their conclusions are based on a few, or even a single time series, raising questions about
the statistical significance of the results and their generalization.

� The methods are evaluated for short-term forecasting horizons, often one-step-ahead, not
considering medium and long-term ones.

� No benchmarks are used to compare the accuracy of ML methods versus alternative ones.

As a response, the study includes eight classical methods and 10 machine learning methods
evaluated using one-step and multiple-step forecasts across a collection of 1,045 monthly time
series. Although not definitive, the results are intended to be objective and robust.

10.3 Time Series Datasets

The time series datasets used in the study were drawn from the time series datasets used in the
M3-Competition. The M3-Competition was the third in a series of competitions that sought to
discover exactly what algorithms perform well in practice on real time series forecasting problems.
The results of the competition were published in the 2000 paper titled The M3-Competition:
Results, Conclusions and Implications. The datasets used in the competition were drawn from a
wide range of industries and had a range of different time intervals, from hourly to annual.
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The 3003 series of the M3-Competition were selected on a quota basis to include
various types of time series data (micro, industry, macro, etc.) and different time
intervals between successive observations (yearly, quarterly, etc.).

— The M3-Competition: Results, Conclusions and Implications, 2000.

The table below, taken from the paper, provides a summary of the 3,003 datasets used in
the competition.

Figure 10.1: Table of Datasets, Industry and Time Interval Used in the M3-Competition. Taken
from The M3-Competition: Results, Conclusions and Implications.

The finding of the competition was that simpler time series forecasting methods outperform
more sophisticated methods, including neural network models.

This study, the previous two M-Competitions and many other empirical studies have
proven, beyond the slightest doubt, that elaborate theoretical constructs or more
sophisticated methods do not necessarily improve post-sample forecasting accuracy,
over simple methods, although they can better fit a statistical model to the available
historical data.

— The M3-Competition: Results, Conclusions and Implications, 2000.

The more recent study that we are reviewing in this tutorial that evaluate machine learning
methods selected a subset of 1,045 time series with a monthly interval from those used in the
M3 competition.

... evaluate such performance across multiple forecasting horizons using a large
subset of 1045 monthly time series used in the M3 Competition.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

10.4 Time Series Forecasting Methods

The study evaluates the performance of eight classical (or simpler) methods and 10 machine
learning methods.

... of eight traditional statistical methods and eight popular ML ones, [...], plus two
more that have become popular during recent years.
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— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

The eight classical methods evaluated were as follows:

� Naive 2, which is actually a random walk model adjusted for season.

� Simple Exponential Smoothing.

� Holt.

� Damped exponential smoothing.

� Average of SES, Holt, and Damped.

� Theta method.

� ARIMA, automatic.

� ETS, automatic.

A total of eight machine learning methods were used in an effort to reproduce and compare
to results presented in the 2010 paper An Empirical Comparison of Machine Learning Models
for Time Series Forecasting. They were:

� Multilayer Perceptron (MLP).

� Bayesian Neural Network (BNN).

� Radial Basis Functions (RBF).

� Generalized Regression Neural Networks (GRNN), also called kernel regression.

� k-Nearest Neighbor regression (KNN).

� CART regression trees (CART).

� Support Vector Regression (SVR).

� Gaussian Processes (GP).

An additional two modern neural network algorithms were also added to the list given the
recent rise in their adoption; they were:

� Recurrent Neural Network (RNN).

� Long Short-Term Memory (LSTM).
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10.5 Data Preparation

A careful data preparation methodology was used, again, based on the methodology described
in the 2010 paper An Empirical Comparison of Machine Learning Models for Time Series
Forecasting. In that paper, each time series was adjusted using a power transform, deseasonalized
and detrended.

... before computing the 18 forecasts, they preprocessed the series in order to achieve
stationarity in their mean and variance. This was done using the log transformation,
then deseasonalization and finally scaling, while first differences were also considered
for removing the component of trend.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

Inspired by these operations, variations of five different data transforms were applied for an
MLP for one-step forecasting and their results were compared. The five transforms were:

� Original data.

� Box-Cox Power Transform.

� Deseasonalizing the data.

� Detrending the data.

� All three transforms (power, deseasonalize, detrend).

Generally, it was found that the best approach was to apply a power transform and desea-
sonalize the data, and perhaps detrend the series as well.

The best combination according to sMAPE is number 7 (Box-Cox transformation,
deseasonalization) while the best one according to MASE is number 10 (Box-Cox
transformation, deseasonalization and detrending)

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

10.6 One-step Forecasting Results

All models were evaluated using one-step time series forecasting. Specifically, the last 18 time
steps were used as a test set, and models were fit on all remaining observations. A separate
one-step forecast was made for each of the 18 observations in the test set, presumably using a
walk-forward validation method where true observations were used as input in order to make
each forecast.

The forecasting model was developed using the first n - 18 observations, where n
is the length of the series. Then, 18 forecasts were produced and their accuracy
was evaluated compared to the actual values not used in developing the forecasting
model.
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— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018

Reviewing the results, the MLP and BNN were found to achieve the best performance from
all of the machine learning methods.

The results [...] show that MLP and BNN outperform the remaining ML methods.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

An interesting result was that RNNs and LSTMs were found to perform poorly. This
confirms a earlier finding in the application of LSTMs to univariate time series forecast reported
by Gers, et al. in 2001 titled Applying LSTM to Time Series Predictable through Time-Window
Approaches. In that study, they also reported that LSTMs are easily outperformed by simpler
methods and may not be suited to simple autoregressive-type univariate time series forecasting
problems.

It should be noted that RNN is among the less accurate ML methods, demonstrating
that research progress does not necessarily guarantee improvements in forecasting
performance. This conclusion also applies in the performance of LSTM, another
popular and more advanced ML method, which does not enhance forecasting accuracy
too.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

Comparing the performance of all methods, it was found that the machine learning methods
were all out-performed by simple classical methods, where ETS and ARIMA models performed
the best overall. This finding confirms the results from previous similar studies and competitions.

Figure 10.2: Bar Chart Comparing Model Performance (sMAPE) for One-step Forecasts. Taken
from Statistical and Machine Learning forecasting methods: Concerns and ways forward.
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10.7 Multi-step Forecasting Results

Multi-step forecasting involves predicting multiple steps ahead of the last known observation.
Three approaches to multi-step forecasting were evaluated for the machine learning methods;
they were:

� Iterative forecasting

� Direct forecasting

� Multi-neural network forecasting

The classical methods were found to outperform the machine learning methods again. In
this case, methods such as Theta, ARIMA, and a combination of exponential smoothing (Comb)
were found to achieve the best performance.

In brief, statistical models seem to generally outperform ML methods across all
forecasting horizons, with Theta, Comb and ARIMA being the dominant ones among
the competitors according to both error metrics examined.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

10.8 Outcomes

The study provides important supporting evidence that classical methods may dominate uni-
variate time series forecasting, at least on the types of forecasting problems evaluated. The
study demonstrates the worse performance and the increase in computational cost of machine
learning and deep learning methods for univariate time series forecasting for both one-step and
multi-step forecasts.

These findings strongly encourage the use of classical methods, such as ETS, ARIMA, and
others as a first step before more elaborate methods are explored, and requires that the results
from these simpler methods be used as a baseline in performance that more elaborate methods
must clear in order to justify their usage. It also highlights the need to not just consider the
careful use of data preparation methods, but to actively test multiple different combinations of
data preparation schemes for a given problem in order to discover what works best, even in the
case of classical methods.

Machine learning and deep learning methods may still achieve better performance on specific
univariate time series problems and should be evaluated. The study does not look at more
complex time series problems, such as those datasets with:

� Complex irregular temporal structures.

� Missing observations

� Heavy noise.

� Complex interrelationships between multiple variates.
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The study concludes with an honest puzzlement at why machine learning methods perform
so poorly in practice, given their impressive performance in other areas of artificial intelligence.

The most interesting question and greatest challenge is to find the reasons for their
poor performance with the objective of improving their accuracy and exploiting
their huge potential. AI learning algorithms have revolutionized a wide range of
applications in diverse fields and there is no reason that the same cannot be achieved
with the ML methods in forecasting. Thus, we must find how to be applied to
improve their ability to forecast more accurately.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

Comments are made by the authors regarding LSTMs and RNNs, that are generally believed
to be the deep learning approach for sequence prediction problems in general, and in this case
their clearly poor performance in practice.

... one would expect RNN and LSTM, which are more advanced types of NNs, to be
far more accurate than the ARIMA and the rest of the statistical methods utilized.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

They comment that LSTMs appear to be more suited at fitting or overfitting the training
dataset rather than forecasting it.

Another interesting example could be the case of LSTM that compared to simpler
NNs like RNN and MLP, report better model fitting but worse forecasting accuracy

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

There is work to do and machine learning methods and deep learning methods hold the
promise of better learning time series data than classical statistical methods, and even doing so
directly on the raw observations via automatic feature learning.

Given their ability to learn, ML methods should do better than simple benchmarks,
like exponential smoothing. Accepting the problem is the first step in devising
workable solutions and we hope that those in the field of AI and ML will accept the
empirical findings and work to improve the forecasting accuracy of their methods.

— Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.

10.9 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Develop Methodology. Develop a methodology for working through a univariate time
series forecasting problem (e.g. what algorithms in what order) based on the results
presented in this lesson and the referenced study.
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� Find Example. Research and find an example of a research paper that presents the
results of a deep learning model for time series foresting without comparing it to a naive
forecast or a classical method.

� Additional Limitations. Research and find another research paper that lists the limita-
tions of machine learning or deep learning methods for univariate time series forecasting
problems.

If you explore any of these extensions, I’d love to know.

10.10 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Makridakis Competitions, Wikipedia.
https://en.wikipedia.org/wiki/Makridakis_Competitions

� The M3-Competition: Results, Conclusions and Implications, 2000.
https://www.sciencedirect.com/science/article/pii/S0169207000000571

� The M4 Competition: Results, findings, conclusion and way forward, 2018.
https://www.sciencedirect.com/science/article/pii/S0169207018300785

� Statistical and Machine Learning forecasting methods: Concerns and ways forward, 2018.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194889

� An Empirical Comparison of Machine Learning Models for Time Series Forecasting, 2010.
https://www.tandfonline.com/doi/abs/10.1080/07474938.2010.481556

� Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001.
https://link.springer.com/chapter/10.1007/3-540-44668-0_93

10.11 Summary

In this tutorial, you discovered the important findings of a recent study evaluating and comparing
the performance of classical and modern machine learning methods on a large and diverse set of
time series forecasting datasets. Specifically, you learned:

� Classical methods like ETS and ARIMA out-perform machine learning and deep learning
methods for one-step forecasting on univariate datasets.

� Classical methods like Theta and ARIMA out-perform machine learning and deep learning
methods for multi-step forecasting on univariate datasets.

� Machine learning and deep learning methods do not yet deliver on their promise for
univariate time series forecasting and there is much work to do.

10.11.1 Next

In the next lesson, you will discover how to develop robust naive forecasting models for univariate
time series forecasting problems.

https://en.wikipedia.org/wiki/Makridakis_Competitions
https://www.sciencedirect.com/science/article/pii/S0169207000000571
https://www.sciencedirect.com/science/article/pii/S0169207018300785
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194889
https://www.tandfonline.com/doi/abs/10.1080/07474938.2010.481556
https://link.springer.com/chapter/10.1007/3-540-44668-0_93


Chapter 11

How to Develop Simple Methods for
Univariate Forecasting

Simple forecasting methods include naively using the last observation as the prediction or an
average of prior observations. It is important to evaluate the performance of simple forecasting
methods on univariate time series forecasting problems before using more sophisticated methods
as their performance provides a lower-bound and point of comparison that can be used to
determine of a model has skill or not for a given problem. Although simple, methods such as
the naive and average forecast strategies can be tuned to a specific problem in terms of the
choice of which prior observation to persist or how many prior observations to average. Often,
tuning the hyperparameters of these simple strategies can provide a more robust and defensible
lower bound on model performance, as well as surprising results that may inform the choice and
configuration of more sophisticated methods.

In this tutorial, you will discover how to develop a framework from scratch for grid searching
simple naive and averaging strategies for time series forecasting with univariate data. After
completing this tutorial, you will know:

� How to develop a framework for grid searching simple models from scratch using walk-
forward validation.

� How to grid search simple model hyperparameters for daily time series data for births.

� How to grid search simple model hyperparameters for monthly time series data for shampoo
sales, car sales, and temperature.

Let’s get started.

11.1 Tutorial Overview

This tutorial is divided into six parts; they are:

1. Simple Forecasting Strategies

2. Develop a Grid Search Framework

3. Case Study 1: No Trend or Seasonality
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4. Case Study 2: Trend

5. Case Study 3: Seasonality

6. Case Study 4: Trend and Seasonality

11.2 Simple Forecasting Strategies

It is important and useful to test simple forecast strategies prior to testing more complex models.
Simple forecast strategies are those that assume little or nothing about the nature of the forecast
problem and are fast to implement and calculate. The results can be used as a baseline in
performance and used as a point of a comparison. If a model can perform better than the
performance of a simple forecast strategy, then it can be said to be skillful. There are two main
themes to simple forecast strategies; they are:

� Naive, or using observations values directly.

� Average, or using a statistic calculated on previous observations.

For more information on simple forecasting strategies, see Chapter 5.

11.3 Develop a Grid Search Framework

In this section, we will develop a framework for grid searching the two simple forecast strategies
described in the previous section, namely the naive and average strategies. We can start off by
implementing a naive forecast strategy. For a given dataset of historical observations, we can
persist any value in that history, that is from the previous observation at index -1 to the first
observation in the history at -(len(data)). The naive forecast() function below implements
the naive forecast strategy for a given offset from 1 to the length of the dataset.

# one-step naive forecast

def naive_forecast(history, n):

return history[-n]

Listing 11.1: Example of a function for making a persistence forecast.

We can test this function out on a small contrived dataset.

# example of a one-step naive forecast

def naive_forecast(history, n):

return history[-n]

# define dataset

data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

print(data)

# test naive forecast

for i in range(1, len(data)+1):

print(naive_forecast(data, i))

Listing 11.2: Example of making a persistence forecast.
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Running the example first prints the contrived dataset, then the naive forecast for each offset
in the historical dataset.

[10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

100.0

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

Listing 11.3: Example output from making a persistence forecast.

We can now look at developing a function for the average forecast strategy. Averaging the
last n observations is straight-forward; for example:

# mean forecast

from numpy import mean

result = mean(history[-n:])

Listing 11.4: Example of averaging prior observations.

We may also want to test out the median in those cases where the distribution of observations
is non-Gaussian.

# median forecast

from numpy import median

result = median(history[-n:])

Listing 11.5: Example of calculating the median prior observations.

The average forecast() function below implements this taking the historical data and a
config array or tuple that specifies the number of prior values to average as an integer, and a
string that describe the way to calculate the average (mean or median).

# one-step average forecast

def average_forecast(history, config):

n, avg_type = config

# mean of last n values

if avg_type is 'mean':

return mean(history[-n:])

# median of last n values

return median(history[-n:])

Listing 11.6: Example of a function for calculating an average forecast.

The complete example on a small contrived dataset is listed below.

# example of an average forecast

from numpy import mean

from numpy import median

# one-step average forecast

def average_forecast(history, config):
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n, avg_type = config

# mean of last n values

if avg_type is 'mean':

return mean(history[-n:])

# median of last n values

return median(history[-n:])

# define dataset

data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

print(data)

# test naive forecast

for i in range(1, len(data)+1):

print(average_forecast(data, (i, 'mean')))

Listing 11.7: Example of making an average forecast.

Running the example forecasts the next value in the series as the mean value from contiguous
subsets of prior observations from -1 to -10, inclusively.

[10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

100.0

95.0

90.0

85.0

80.0

75.0

70.0

65.0

60.0

55.0

Listing 11.8: Example output from making an average forecast.

We can update the function to support averaging over seasonal data, respecting the seasonal
offset. An offset argument can be added to the function that when not set to 1 will determine
the number of prior observations backwards to count before collecting values from which to
include in the average. For example, if n=1 and offset=3, then the average is calculated from
the single value at n × offset or 1 × 3 = −3. If n = 2 and offset = 3, then the average is
calculated from the values at 1 × 3 or -3 and 2 × 3 or -6. We can also add some protection to
raise an exception when a seasonal configuration (n × offset) extends beyond the end of the
historical observations. The updated function is listed below.

# one-step average forecast

def average_forecast(history, config):

n, offset, avg_type = config

values = list()

if offset == 1:

values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])
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# mean of last n values

if avg_type is 'mean':

return mean(values)

# median of last n values

return median(values)

Listing 11.9: Example of a function for calculating an average forecast with support for
seasonality.

We can test out this function on a small contrived dataset with a seasonal cycle. The
complete example is listed below.

# example of an average forecast for seasonal data

from numpy import mean

from numpy import median

# one-step average forecast

def average_forecast(history, config):

n, offset, avg_type = config

values = list()

if offset == 1:

values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])

# mean of last n values

if avg_type is 'mean':

return mean(values)

# median of last n values

return median(values)

# define dataset

data = [10.0, 20.0, 30.0, 10.0, 20.0, 30.0, 10.0, 20.0, 30.0]

print(data)

# test naive forecast

for i in [1, 2, 3]:

print(average_forecast(data, (i, 3, 'mean')))

Listing 11.10: Example of making an average forecast with seasonality.

Running the example calculates the mean values of [10], [10, 10] and [10, 10, 10].

[10.0, 20.0, 30.0, 10.0, 20.0, 30.0, 10.0, 20.0, 30.0]

10.0

10.0

10.0

Listing 11.11: Example output from making an average forecast with seasonality.

It is possible to combine both the naive and the average forecast strategies together into
the same function. There is a little overlap between the methods, specifically the n-offset into
the history that is used to either persist values or determine the number of values to average.
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It is helpful to have both strategies supported by one function so that we can test a suite of
configurations for both strategies at once as part of a broader grid search of simple models. The
simple forecast() function below combines both strategies into a single function.

# one-step simple forecast

def simple_forecast(history, config):

n, offset, avg_type = config

# persist value, ignore other config

if avg_type == 'persist':

return history[-n]

# collect values to average

values = list()

if offset == 1:

values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])

# check if we can average

if len(values) < 2:

raise Exception('Cannot calculate average')

# mean of last n values

if avg_type == 'mean':

return mean(values)

# median of last n values

return median(values)

Listing 11.12: Example of a function that combines persistence and average forecasts.

Next, we need to build up some functions for fitting and evaluating a model repeatedly via
walk-forward validation, including splitting a dataset into train and test sets and evaluating
one-step forecasts. We can split a list or NumPy array of data using a slice given a specified
size of the split, e.g. the number of time steps to use from the data in the test set. The
train test split() function below implements this for a provided dataset and a specified
number of time steps to use in the test set.

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

Listing 11.13: Example of a function for splitting data into train and test sets.

After forecasts have been made for each step in the test dataset, they need to be compared
to the test set in order to calculate an error score. There are many popular error scores for
time series forecasting. In this case, we will use root mean squared error (RMSE), but you can
change this to your preferred measure, e.g. MAPE, MAE, etc. The measure rmse() function
below will calculate the RMSE given a list of actual (the test set) and predicted values.

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))
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Listing 11.14: Example of a function for calculating RMSE.

We can now implement the walk-forward validation scheme. This is a standard approach to
evaluating a time series forecasting model that respects the temporal ordering of observations.
First, a provided univariate time series dataset is split into train and test sets using the
train test split() function. Then the number of observations in the test set are enumerated.
For each we fit a model on all of the history and make a one step forecast. The true observation for
the time step is then added to the history, and the process is repeated. The simple forecast()

function is called in order to fit a model and make a prediction. Finally, an error score is calculated
by comparing all one-step forecasts to the actual test set by calling the measure rmse() function.
The walk forward validation() function below implements this, taking a univariate time
series, a number of time steps to use in the test set, and an array of model configuration.

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = simple_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

Listing 11.15: Example of a function for performing walk-forward validation.

If you are interested in making multi-step predictions, you can change the call to predict() in
the simple forecast() function and also change the calculation of error in the measure rmse()

function. We can call walk forward validation() repeatedly with different lists of model
configurations. One possible issue is that some combinations of model configurations may not
be called for the model and will throw an exception.

We can trap exceptions and ignore warnings during the grid search by wrapping all calls to
walk forward validation() with a try-except and a block to ignore warnings. We can also
add debugging support to disable these protections in the case we want to see what is really
going on. Finally, if an error does occur, we can return a None result; otherwise, we can print
some information about the skill of each model evaluated. This is helpful when a large number
of models are evaluated. The score model() function below implements this and returns a
tuple of (key and result), where the key is a string version of the tested model configuration.

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)
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# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

Listing 11.16: Example of a function the robust evaluation of a model.

Next, we need a loop to test a list of different model configurations. This is the main
function that drives the grid search process and will call the score model() function for each
model configuration. We can dramatically speed up the grid search process by evaluating model
configurations in parallel. One way to do that is to use the Joblib library1. We can define a
Parallel object with the number of cores to use and set it to the number of scores detected in
your hardware.

# define executor

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

Listing 11.17: Example of preparing a Joblib executor.

We can then create a list of tasks to execute in parallel, which will be one call to the
score model() function for each model configuration we have.

# define list of tasks

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

Listing 11.18: Example of preparing a task list for a Joblib executor.

Finally, we can use the Parallel object to execute the list of tasks in parallel.

# execute list of tasks

scores = executor(tasks)

Listing 11.19: Example of running a Joblib executor.

On some systems, such as windows that do not support the fork() function, it is necessary
to add a check to ensure that the entry point of the script is only executed by the main process
and not child processes.

...

if __name__ == '__main__':

...

Listing 11.20: Example of wrapping the entry point into the script in a check for the main
process.

1Note, you may have to install Joblib: pip install joblib
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That’s it. We can also provide a non-parallel version of evaluating all model configurations
in case we want to debug something.

# execute list of tasks sequentially

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

Listing 11.21: Example of evaluating a suite of configurations in sequence.

The result of evaluating a list of configurations will be a list of tuples, each with a name
that summarizes a specific model configuration and the error of the model evaluated with that
configuration as either the RMSE or None if there was an error. We can filter out all scores set
to None.

# order scores

scores = [r for r in scores if r[1] != None]

Listing 11.22: Example of filtering out scores for invalid configurations.

We can then sort all tuples in the list by the score in ascending order (best are first), then
return this list of scores for review. The grid search() function below implements this behavior
given a univariate time series dataset, a list of model configurations (list of lists), and the
number of time steps to use in the test set. An optional parallel argument allows the evaluation
of models across all cores to be tuned on or off, and is on by default.

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

Listing 11.23: Example of a function for grid searching configurations.

We’re nearly done. The only thing left to do is to define a list of model configurations to try
for a dataset. We can define this generically. The only parameter we may want to specify is
the periodicity of the seasonal component in the series (offset), if one exists. By default, we
will assume no seasonal component. The simple configs() function below will create a list
of model configurations to evaluate. The function only requires the maximum length of the
historical data as an argument and optionally the periodicity of any seasonal component, which
is defaulted to 1 (no seasonal component).

# create a set of simple configs to try

def simple_configs(max_length, offsets=[1]):

configs = list()

for i in range(1, max_length+1):

for o in offsets:

for t in ['persist', 'mean', 'median']:
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cfg = [i, o, t]

configs.append(cfg)

return configs

Listing 11.24: Example of a function for defining simple forecast configurations to grid search.

We now have a framework for grid searching simple model hyperparameters via one-step
walk-forward validation. It is generic and will work for any in-memory univariate time series
provided as a list or NumPy array. We can make sure all the pieces work together by testing it
on a contrived 10-step dataset. The complete example is listed below.

# grid search simple forecasts

from math import sqrt

from numpy import mean

from numpy import median

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from sklearn.metrics import mean_squared_error

# one-step simple forecast

def simple_forecast(history, config):

n, offset, avg_type = config

# persist value, ignore other config

if avg_type == 'persist':

return history[-n]

# collect values to average

values = list()

if offset == 1:

values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])

# check if we can average

if len(values) < 2:

raise Exception('Cannot calculate average')

# mean of last n values

if avg_type == 'mean':

return mean(values)

# median of last n values

return median(values)

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]
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# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = simple_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])
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return scores

# create a set of simple configs to try

def simple_configs(max_length, offsets=[1]):

configs = list()

for i in range(1, max_length+1):

for o in offsets:

for t in ['persist', 'mean', 'median']:

cfg = [i, o, t]

configs.append(cfg)

return configs

if __name__ == '__main__':

# define dataset

data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

# data split

n_test = 4

# model configs

max_length = len(data) - n_test

cfg_list = simple_configs(max_length)

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 11.25: Example of demonstrating the grid search infrastructure.

Running the example first prints the contrived time series dataset. Next, the model
configurations and their errors are reported as they are evaluated. Finally, the configurations
and the error for the top three configurations are reported. We can see that the persistence
model with a configuration of 1 (e.g. persist the last observation) achieves the best performance
of the simple models tested, as would be expected.

[10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

...

> Model[[4, 1, 'mean']] 25.000

> Model[[3, 1, 'median']] 20.000

> Model[[6, 1, 'mean']] 35.000

> Model[[5, 1, 'median']] 30.000

> Model[[6, 1, 'median']] 35.000

done

[1, 1, 'persist'] 10.0

[2, 1, 'mean'] 15.0

[2, 1, 'median'] 15.0

Listing 11.26: Example output from demonstrating the grid search infrastructure.

Now that we have a robust framework for grid searching simple model hyperparameters, let’s
test it out on a suite of standard univariate time series datasets. All datasets in this tutorial
were drawn from the Time Series Dataset Library on the DataMarket website2. The results

2https://datamarket.com/data/list/?q=provider:tsdl

https://datamarket.com/data/list/?q=provider:tsdl
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demonstrated on each dataset provide a baseline of performance that can be used to compare
more sophisticated methods, such as SARIMA, ETS, and even machine learning methods.

11.4 Case Study 1: No Trend or Seasonality

The daily female births dataset summarizes the daily total female births in California, USA in
1959. You can download the dataset directly from here:

� daily-total-female-births.csv 3

Save the file with the filename daily-total-female-births.csv in your current working
directory. We can load this dataset as a Pandas Series using the function read csv() and
summarize the shape of the dataset.

# load

series = read_csv('daily-total-female-births.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

Listing 11.27: Example of loading the daily female births dataset.

We can then create a line plot of the series and inspect it for systematic structures like
trends and seasonality.

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.28: Example of plotting the daily female births dataset.

The complete example is listed below.

# load and plot daily births dataset

from pandas import read_csv

from matplotlib import pyplot

# load

series = read_csv('daily-total-female-births.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.29: Example of loading and plotting the daily female births dataset.

Running the example first summarizes the shape of the loaded dataset. The dataset has one
year, or 365 observations. We will use the first 200 for training and the remaining 165 as the
test set.

3https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.

csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
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(365, 1)

Listing 11.30: Example output from loading and summarizing the shape of the daily female
births dataset

A line plot of the series is also created. We can see that there is no obvious trend or
seasonality.

Figure 11.1: Line Plot of the Daily Female Births Dataset.

We can now grid search naive models for the dataset. The complete example grid searching
the daily female univariate time series forecasting problem is listed below.

# grid search simple forecast for daily female births

from math import sqrt

from numpy import mean

from numpy import median

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from sklearn.metrics import mean_squared_error

from pandas import read_csv
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# one-step simple forecast

def simple_forecast(history, config):

n, offset, avg_type = config

# persist value, ignore other config

if avg_type == 'persist':

return history[-n]

# collect values to average

values = list()

if offset == 1:

values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])

# check if we can average

if len(values) < 2:

raise Exception('Cannot calculate average')

# mean of last n values

if avg_type == 'mean':

return mean(values)

# median of last n values

return median(values)

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = simple_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):
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result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of simple configs to try

def simple_configs(max_length, offsets=[1]):

configs = list()

for i in range(1, max_length+1):

for o in offsets:

for t in ['persist', 'mean', 'median']:

cfg = [i, o, t]

configs.append(cfg)

return configs

if __name__ == '__main__':

# define dataset

series = read_csv('daily-total-female-births.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 165

# model configs

max_length = len(data) - n_test

cfg_list = simple_configs(max_length)

# grid search
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scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 11.31: Example of grid searching naive models for the daily female births dataset.

Running the example prints the model configurations and the RMSE are printed as the
models are evaluated. The top three model configurations and their error are reported at the
end of the run.

...

> Model[[186, 1, 'mean']] 7.523

> Model[[200, 1, 'median']] 7.681

> Model[[186, 1, 'median']] 7.691

> Model[[187, 1, 'persist']] 11.137

> Model[[187, 1, 'mean']] 7.527

done

[22, 1, 'mean'] 6.930411499775709

[23, 1, 'mean'] 6.932293117115201

[21, 1, 'mean'] 6.951918385845375

Listing 11.32: Example output from grid searching naive models for the daily female births
dataset.

We can see that the best result was an RMSE of about 6.93 births with the following
configuration:

� Strategy: Average

� n: 22

� function: mean()

This is surprising given the lack of trend or seasonality, I would have expected either a
persistence of -1 or an average of the entire historical dataset to result in the best performance.

11.5 Case Study 2: Trend

The monthly shampoo sales dataset summarizes the monthly sales of shampoo over a three-year
period. You can download the dataset directly from here:

� monthly-shampoo-sales.csv 4

Save the file with the filename monthly-shampoo-sales.csv in your current working di-
rectory. We can load this dataset as a Pandas Series using the function read csv() and
summarize the shape of the dataset.

4https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv
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# load

series = read_csv('monthly-shampoo-sales.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

Listing 11.33: Example of loading the monthly shampoo sales dataset.

We can then create a line plot of the series and inspect it for systematic structures like
trends and seasonality.

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.34: Example of plotting the monthly shampoo sales dataset.

The complete example is listed below.

# load and plot monthly shampoo sales dataset

from pandas import read_csv

from matplotlib import pyplot

# load

series = read_csv('monthly-shampoo-sales.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.35: Example of loading and plotting the monthly shampoo sales dataset.

Running the example first summarizes the shape of the loaded dataset. The dataset has
three years, or 36 observations. We will use the first 24 for training and the remaining 12 as the
test set.

(36, 1)

Listing 11.36: Example output from loading and summarizing the shape of the monthly shampoo
sales dataset

A line plot of the series is also created. We can see that there is an obvious trend and no
obvious seasonality.
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Figure 11.2: Line Plot of the Monthly Shampoo Sales Dataset.

We can now grid search naive models for the dataset. The complete example grid searching
the shampoo sales univariate time series forecasting problem is listed below.

# grid search simple forecast for monthly shampoo sales

from math import sqrt

from numpy import mean

from numpy import median

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from sklearn.metrics import mean_squared_error

from pandas import read_csv

# one-step simple forecast

def simple_forecast(history, config):

n, offset, avg_type = config

# persist value, ignore other config

if avg_type == 'persist':

return history[-n]

# collect values to average

values = list()

if offset == 1:
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values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])

# check if we can average

if len(values) < 2:

raise Exception('Cannot calculate average')

# mean of last n values

if avg_type == 'mean':

return mean(values)

# median of last n values

return median(values)

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = simple_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:
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# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of simple configs to try

def simple_configs(max_length, offsets=[1]):

configs = list()

for i in range(1, max_length+1):

for o in offsets:

for t in ['persist', 'mean', 'median']:

cfg = [i, o, t]

configs.append(cfg)

return configs

if __name__ == '__main__':

# load dataset

series = read_csv('monthly-shampoo-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

max_length = len(data) - n_test

cfg_list = simple_configs(max_length)

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 11.37: Example of grid searching naive models for the monthly shampoo sales dataset.

Running the example prints the configurations and the RMSE are printed as the models are
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evaluated. The top three model configurations and their error are reported at the end of the
run.

...

> Model[[23, 1, 'mean']] 209.782

> Model[[23, 1, 'median']] 221.863

> Model[[24, 1, 'persist']] 305.635

> Model[[24, 1, 'mean']] 213.466

> Model[[24, 1, 'median']] 226.061

done

[2, 1, 'persist'] 95.69454007413378

[2, 1, 'mean'] 96.01140340258198

[2, 1, 'median'] 96.01140340258198

Listing 11.38: Example output from grid searching naive models for the monthly shampoo sales
dataset.

We can see that the best result was an RMSE of about 95.69 sales with the following
configuration:

� Strategy: Persist

� n: 2

This is surprising as the trend structure of the data would suggest that persisting the previous
value (-1) would be the best approach, not persisting the second last value.

11.6 Case Study 3: Seasonality

The monthly mean temperatures dataset summarizes the monthly average air temperatures in
Nottingham Castle, England from 1920 to 1939 in degrees Fahrenheit. You can download the
dataset directly from here:

� monthly-mean-temp.csv 5

Save the file with the filename monthly-mean-temp.csv in your current working directory.
We can load this dataset as a Pandas Series using the function read csv() and summarize
the shape of the dataset.

# load

series = read_csv('monthly-mean-temp.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

Listing 11.39: Example of loading the monthly mean temperature dataset.

We can then create a line plot of the series and inspect it for systematic structures like
trends and seasonality.

5https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv


11.6. Case Study 3: Seasonality 194

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.40: Example of plotting the monthly mean temperature dataset.

The complete example is listed below.

# load and plot monthly mean temp dataset

from pandas import read_csv

from matplotlib import pyplot

# load

series = read_csv('monthly-mean-temp.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.41: Example of loading and plotting the monthly mean temperature dataset.

Running the example first summarizes the shape of the loaded dataset. The dataset has 20
years, or 240 observations.

(240, 1)

Listing 11.42: Example output from loading and summarizing the shape of the monthly mean
temperature dataset

A line plot of the series is also created. We can see that there is no obvious trend and an
obvious seasonality structure.
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Figure 11.3: Line Plot of the Monthly Mean Temperatures Dataset.

We will trim the dataset to the last five years of data (60 observations) in order to speed up
the model evaluation process and use the last year or 12 observations for the test set.

# trim dataset to 5 years

data = data[-(5*12):]

Listing 11.43: Example of reducing the size of the dataset.

The period of the seasonal component is about one year, or 12 observations. We will use
this as the seasonal period in the call to the simple configs() function when preparing the
model configurations.

# model configs

cfg_list = simple_configs(seasonal=[0, 12])

Listing 11.44: Example of specifying some seasonal configurations.

We can now grid search naive models for the dataset. The complete example grid searching
the monthly mean temperature time series forecasting problem is listed below.

# grid search simple forecast for monthly mean temperature

from math import sqrt

from numpy import mean

from numpy import median

from multiprocessing import cpu_count
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from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from sklearn.metrics import mean_squared_error

from pandas import read_csv

# one-step simple forecast

def simple_forecast(history, config):

n, offset, avg_type = config

# persist value, ignore other config

if avg_type == 'persist':

return history[-n]

# collect values to average

values = list()

if offset == 1:

values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])

# check if we can average

if len(values) < 2:

raise Exception('Cannot calculate average')

# mean of last n values

if avg_type == 'mean':

return mean(values)

# median of last n values

return median(values)

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = simple_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop
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history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of simple configs to try

def simple_configs(max_length, offsets=[1]):

configs = list()

for i in range(1, max_length+1):

for o in offsets:

for t in ['persist', 'mean', 'median']:

cfg = [i, o, t]

configs.append(cfg)

return configs

if __name__ == '__main__':

# define dataset

series = read_csv('monthly-mean-temp.csv', header=0, index_col=0)
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data = series.values

# data split

n_test = 12

# model configs

max_length = len(data) - n_test

cfg_list = simple_configs(max_length, offsets=[1,12])

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 11.45: Example of grid searching naive models for the monthly mean temperature
dataset.

Running the example prints the model configurations and the RMSE are printed as the
models are evaluated. The top three model configurations and their error are reported at the
end of the run.

...

> Model[[227, 12, 'persist']] 5.365

> Model[[228, 1, 'persist']] 2.818

> Model[[228, 1, 'mean']] 8.258

> Model[[228, 1, 'median']] 8.361

> Model[[228, 12, 'persist']] 2.818

done

[4, 12, 'mean'] 1.5015616870445234

[8, 12, 'mean'] 1.5794579766489512

[13, 12, 'mean'] 1.586186052546763

Listing 11.46: Example output from grid searching naive models for the monthly mean
temperature dataset.

We can see that the best result was an RMSE of about 1.50 degrees with the following
configuration:

� Strategy: Average

� n: 4

� offset: 12

� function: mean()

This finding is not too surprising. Given the seasonal structure of the data, we would expect
a function of the last few observations at prior points in the yearly cycle to be effective.

11.7 Case Study 4: Trend and Seasonality

The monthly car sales dataset summarizes the monthly car sales in Quebec, Canada between
1960 and 1968. You can download the dataset directly from here:
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� monthly-car-sales.csv 6

Save the file with the filename monthly-car-sales.csv in your current working directory.
We can load this dataset as a Pandas Series using the function read csv() and summarize
the shape of the dataset.

# load

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

Listing 11.47: Example of loading the monthly car sales dataset.

We can then create a line plot of the series and inspect it for systematic structures like
trends and seasonality.

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.48: Example of plotting the monthly car sales dataset.

The complete example is listed below.

# load and plot monthly car sales dataset

from pandas import read_csv

from matplotlib import pyplot

# load

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 11.49: Example of loading and plotting the monthly car sales dataset.

Running the example first summarizes the shape of the loaded dataset. The dataset has 9
years, or 108 observations. We will use the last year or 12 observations as the test set.

(108, 1)

Listing 11.50: Example output from loading and summarizing the shape of the monthly shampoo
sales dataset

A line plot of the series is also created. We can see that there is an obvious trend and
seasonal components.

6https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
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Figure 11.4: Line Plot of the Monthly Car Sales Dataset.

The period of the seasonal component could be six months or 12 months. We will try both
as the seasonal period in the call to the simple configs() function when preparing the model
configurations.

# model configs

cfg_list = simple_configs(seasonal=[0,6,12])

Listing 11.51: Example of specifying some seasonal configurations.

We can now grid search naive models for the dataset. The complete example grid searching
the monthly car sales time series forecasting problem is listed below.

# grid search simple forecast for monthly car sales

from math import sqrt

from numpy import mean

from numpy import median

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from sklearn.metrics import mean_squared_error

from pandas import read_csv
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# one-step simple forecast

def simple_forecast(history, config):

n, offset, avg_type = config

# persist value, ignore other config

if avg_type == 'persist':

return history[-n]

# collect values to average

values = list()

if offset == 1:

values = history[-n:]

else:

# skip bad configs

if n*offset > len(history):

raise Exception('Config beyond end of data: %d %d' % (n,offset))

# try and collect n values using offset

for i in range(1, n+1):

ix = i * offset

values.append(history[-ix])

# check if we can average

if len(values) < 2:

raise Exception('Cannot calculate average')

# mean of last n values

if avg_type == 'mean':

return mean(values)

# median of last n values

return median(values)

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = simple_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):
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result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of simple configs to try

def simple_configs(max_length, offsets=[1]):

configs = list()

for i in range(1, max_length+1):

for o in offsets:

for t in ['persist', 'mean', 'median']:

cfg = [i, o, t]

configs.append(cfg)

return configs

if __name__ == '__main__':

# define dataset

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

max_length = len(data) - n_test

cfg_list = simple_configs(max_length, offsets=[1,12])

# grid search
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scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 11.52: Example of grid searching naive models for the monthly car sales dataset.

Running the example prints the model configurations and the RMSE are printed as the
models are evaluated. The top three model configurations and their error are reported at the
end of the run.

...

> Model[[79, 1, 'median']] 5124.113

> Model[[91, 12, 'persist']] 9580.149

> Model[[79, 12, 'persist']] 8641.529

> Model[[92, 1, 'persist']] 9830.921

> Model[[92, 1, 'mean']] 5148.126

done

[3, 12, 'median'] 1841.1559321976688

[3, 12, 'mean'] 2115.198495632485

[4, 12, 'median'] 2184.37708988932

Listing 11.53: Example output from grid searching naive models for the monthly car sales
dataset.

We can see that the best result was an RMSE of about 1841.15 sales with the following
configuration:

� Strategy: Average

� n: 3

� offset: 12

� function: median()

It is not surprising that the chosen model is a function of the last few observations at the
same point in prior cycles, although the use of the median instead of the mean may not have
been immediately obvious and the results were much better than the mean.

11.8 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Plot Forecast. Update the framework to re-fit a model with the best configuration and
forecast the entire test dataset, then plot the forecast compared to the actual observations
in the test set.

� Drift Method. Implement the drift method for simple forecasts and compare the results
to the average and naive methods.



11.9. Further Reading 204

� Another Dataset. Apply the developed framework to an additional univariate time
series problem (e.g. from the Time Series Dataset Library).

If you explore any of these extensions, I’d love to know.

11.9 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

11.9.1 Datasets

� Time Series Dataset Library, DataMarket.
https://datamarket.com/data/list/?q=provider:tsdl

� Daily Female Births Dataset, DataMarket.
https://datamarket.com/data/set/235k/daily-total-female-births-in-california-1959

� Monthly Shampoo Sales Dataset, DataMarket.
https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period

� Monthly Mean Temperature Dataset, DataMarket.
https://datamarket.com/data/set/22li/mean-monthly-air-temperature-deg-f-nottingham-castle-1920-1939

� Monthly Car Sales Dataset, DataMarket.
https://datamarket.com/data/set/22n4/monthly-car-sales-in-quebec-1960-1968

11.9.2 APIs

� numpy.mean API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html

� numpy.median API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html

� sklearn.metrics.mean squared error API.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_

error.html

� pandas.read csv API.
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

� Joblib: running Python functions as pipeline jobs.
https://pythonhosted.org/joblib/

11.9.3 Articles

� Forecasting, Wikipedia.
https://en.wikipedia.org/wiki/Forecasting

https://datamarket.com/data/list/?q=provider:tsdl
https://datamarket.com/data/set/235k/daily-total-female-births-in-california-1959
https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period
https://datamarket.com/data/set/22li/mean-monthly-air-temperature-deg-f-nottingham-castle-1920-1939
https://datamarket.com/data/set/22n4/monthly-car-sales-in-quebec-1960-1968
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pythonhosted.org/joblib/
https://en.wikipedia.org/wiki/Forecasting
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11.10 Summary

In this tutorial, you discovered how to develop a framework from scratch for grid searching
simple naive and averaging strategies for time series forecasting with univariate data. Specifically,
you learned:

� How to develop a framework for grid searching simple models from scratch using walk-
forward validation.

� How to grid search simple model hyperparameters for daily time series data for births.

� How to grid search simple model hyperparameters for monthly time series data for shampoo
sales, car sales, and temperature.

11.10.1 Next

In the next lesson, you will discover how to develop exponential smoothing models for univariate
time series forecasting problems.



Chapter 12

How to Develop ETS Models for
Univariate Forecasting

Exponential smoothing is a time series forecasting method for univariate data that can be
extended to support data with a systematic trend or seasonal component. It is common practice
to use an optimization process to find the model hyperparameters that result in the exponential
smoothing model with the best performance for a given time series dataset. This practice
applies only to the coefficients used by the model to describe the exponential structure of the
level, trend, and seasonality. It is also possible to automatically optimize other hyperparameters
of an exponential smoothing model, such as whether or not to model the trend and seasonal
component and if so, whether to model them using an additive or multiplicative method.

In this tutorial, you will discover how to develop a framework for grid searching all of the
exponential smoothing model hyperparameters for univariate time series forecasting. After
completing this tutorial, you will know:

� How to develop a framework for grid searching ETS models from scratch using walk-forward
validation.

� How to grid search ETS model hyperparameters for daily time series data for female
births.

� How to grid search ETS model hyperparameters for monthly time series data for shampoo
sales, car sales, and temperature.

Let’s get started.

12.1 Tutorial Overview

This tutorial is divided into five parts; they are:

1. Develop a Grid Search Framework

2. Case Study 1: No Trend or Seasonality

3. Case Study 2: Trend

4. Case Study 3: Seasonality

5. Case Study 4: Trend and Seasonality

206
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12.2 Develop a Grid Search Framework

In this section, we will develop a framework for grid searching exponential smoothing model
hyperparameters for a given univariate time series forecasting problem. For more information
on exponential smoothing for time series forecasting, also called ETS, see Chapter 5. We will
use the implementation of Holt-Winters Exponential Smoothing provided by the Statsmodels
library. This model has hyperparameters that control the nature of the exponential performed
for the series, trend, and seasonality, specifically:

� smoothing level (alpha): the smoothing coefficient for the level.

� smoothing slope (beta): the smoothing coefficient for the trend.

� smoothing seasonal (gamma): the smoothing coefficient for the seasonal component.

� damping slope (phi): the coefficient for the damped trend.

All four of these hyperparameters can be specified when defining the model. If they are not
specified, the library will automatically tune the model and find the optimal values for these
hyperparameters (e.g. optimized=True). There are other hyperparameters that the model will
not automatically tune that you may want to specify; they are:

� trend: The type of trend component, as either add for additive or mul for multiplicative.
Modeling the trend can be disabled by setting it to None.

� damped: Whether or not the trend component should be damped, either True or False.

� seasonal: The type of seasonal component, as either add for additive or mul for multi-
plicative. Modeling the seasonal component can be disabled by setting it to None.

� seasonal periods: The number of time steps in a seasonal period, e.g. 12 for 12 months
in a yearly seasonal structure.

� use boxcox: Whether or not to perform a power transform of the series (True/False) or
specify the lambda for the transform.

If you know enough about your problem to specify one or more of these parameters, then
you should specify them. If not, you can try grid searching these parameters. We can start-off
by defining a function that will fit a model with a given configuration and make a one-step
forecast. The exp smoothing forecast() below implements this behavior. The function takes
an array or list of contiguous prior observations and a list of configuration parameters used to
configure the model. The configuration parameters in order are: the trend type, the dampening
type, the seasonality type, the seasonal period, whether or not to use a Box-Cox transform, and
whether or not to remove the bias when fitting the model.

# one-step Holt Winter's Exponential Smoothing forecast

def exp_smoothing_forecast(history, config):

t,d,s,p,b,r = config

# define model

history = array(history)

model = ExponentialSmoothing(history, trend=t, damped=d, seasonal=s, seasonal_periods=p)
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# fit model

model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

Listing 12.1: Example of a function for making an ETS forecast.

In this tutorial, we will use the grid searching framework developed in Chapter 11 for tuning
and evaluating naive forecasting methods. One important modification to the framework is the
function used to perform the walk-forward validation of the model named walk forward validation().
This function must be updated to call the function for making an ETS forecast. The updated
version of the function is listed below.

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = exp_smoothing_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

Listing 12.2: Example of a function for walk-forward validation with ETS forecasts.

We’re nearly done. The only thing left to do is to define a list of model configurations to try
for a dataset. We can define this generically. The only parameter we may want to specify is the
periodicity of the seasonal component in the series, if one exists. By default, we will assume no
seasonal component. The exp smoothing configs() function below will create a list of model
configurations to evaluate. An optional list of seasonal periods can be specified, and you could
even change the function to specify other elements that you may know about your time series.
In theory, there are 72 possible model configurations to evaluate, but in practice, many will not
be valid and will result in an error that we will trap and ignore.

# create a set of exponential smoothing configs to try

def exp_smoothing_configs(seasonal=[None]):

models = list()

# define config lists

t_params = ['add', 'mul', None]

d_params = [True, False]

s_params = ['add', 'mul', None]

p_params = seasonal

b_params = [True, False]

r_params = [True, False]

# create config instances
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for t in t_params:

for d in d_params:

for s in s_params:

for p in p_params:

for b in b_params:

for r in r_params:

cfg = [t,d,s,p,b,r]

models.append(cfg)

return models

Listing 12.3: Example of a function for defining configurations for ETS models to grid search.

We now have a framework for grid searching triple exponential smoothing model hyperpa-
rameters via one-step walk-forward validation. It is generic and will work for any in-memory
univariate time series provided as a list or NumPy array. We can make sure all the pieces work
together by testing it on a contrived 10-step dataset. The complete example is listed below.

# grid search holt winter's exponential smoothing

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from numpy import array

# one-step Holt Winters Exponential Smoothing forecast

def exp_smoothing_forecast(history, config):

t,d,s,p,b,r = config

# define model

history = array(history)

model = ExponentialSmoothing(history, trend=t, damped=d, seasonal=s, seasonal_periods=p)

# fit model

model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set
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for i in range(len(test)):

# fit model and make forecast for history

yhat = exp_smoothing_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of exponential smoothing configs to try

def exp_smoothing_configs(seasonal=[None]):

models = list()

# define config lists

t_params = ['add', 'mul', None]

d_params = [True, False]

s_params = ['add', 'mul', None]
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p_params = seasonal

b_params = [True, False]

r_params = [True, False]

# create config instances

for t in t_params:

for d in d_params:

for s in s_params:

for p in p_params:

for b in b_params:

for r in r_params:

cfg = [t,d,s,p,b,r]

models.append(cfg)

return models

if __name__ == '__main__':

# define dataset

data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

print(data)

# data split

n_test = 4

# model configs

cfg_list = exp_smoothing_configs()

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 12.4: Example of demonstrating the grid search infrastructure.

Running the example first prints the contrived time series dataset. Next, the model
configurations and their errors are reported as they are evaluated. Finally, the configurations
and the error for the top three configurations are reported.

[10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

> Model[[None, False, None, None, True, True]] 1.380

> Model[[None, False, None, None, True, False]] 10.000

> Model[[None, False, None, None, False, True]] 2.563

> Model[[None, False, None, None, False, False]] 10.000

done

[None, False, None, None, True, True] 1.379824445857423

[None, False, None, None, False, True] 2.5628662672606612

[None, False, None, None, False, False] 10.0

Listing 12.5: Example output from demonstrating the grid search infrastructure.

We do not report the model parameters optimized by the model itself. It is assumed that
you can achieve the same result again by specifying the broader hyperparameters and allow
the library to find the same internal parameters. You can access these internal parameters
by refitting a standalone model with the same configuration and printing the contents of the
params attribute on the model fit; for example:

# access model parameters
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print(model_fit.params)

Listing 12.6: Example of accessing the automatically fit model parameters.

Now that we have a robust framework for grid searching ETS model hyperparameters, let’s
test it out on a suite of standard univariate time series datasets. The datasets were chosen for
demonstration purposes; I am not suggesting that an ETS model is the best approach for each
dataset, and perhaps an SARIMA or something else would be more appropriate in some cases.

12.3 Case Study 1: No Trend or Seasonality

The daily female births dataset summarizes the daily total female births in California, USA in
1959. For more information on this dataset, see Chapter 11 where it was introduced. You can
download the dataset directly from here:

� daily-total-female-births.csv 1

Save the file with the filename daily-total-female-births.csv in your current working
directory. The dataset has one year, or 365 observations. We will use the first 200 for training
and the remaining 165 as the test set. The complete example grid searching the daily female
univariate time series forecasting problem is listed below.

# grid search ets models for daily female births

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from pandas import read_csv

from numpy import array

# one-step Holt Winters Exponential Smoothing forecast

def exp_smoothing_forecast(history, config):

t,d,s,p,b,r = config

# define model

history = array(history)

model = ExponentialSmoothing(history, trend=t, damped=d, seasonal=s, seasonal_periods=p)

# fit model

model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.

csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
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# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = exp_smoothing_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results
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scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of exponential smoothing configs to try

def exp_smoothing_configs(seasonal=[None]):

models = list()

# define config lists

t_params = ['add', 'mul', None]

d_params = [True, False]

s_params = ['add', 'mul', None]

p_params = seasonal

b_params = [True, False]

r_params = [True, False]

# create config instances

for t in t_params:

for d in d_params:

for s in s_params:

for p in p_params:

for b in b_params:

for r in r_params:

cfg = [t,d,s,p,b,r]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('daily-total-female-births.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 165

# model configs

cfg_list = exp_smoothing_configs()

# grid search

scores = grid_search(data[:,0], cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 12.7: Example of grid searching ETS models for the daily female births dataset.

Running the example may take a few minutes as fitting each ETS model can take about a
minute on modern hardware. Model configurations and the RMSE are printed as the models
are evaluated. The top three model configurations and their error are reported at the end of the
run. A truncated example of the results from running the hyperparameter grid search are listed
below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> Model[['mul', False, None, None, True, False]] 6.985

> Model[[None, False, None, None, True, True]] 7.169
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> Model[[None, False, None, None, True, False]] 7.212

> Model[[None, False, None, None, False, True]] 7.117

> Model[[None, False, None, None, False, False]] 7.126

done

['mul', False, None, None, True, True] 6.960703917145126

['mul', False, None, None, True, False] 6.984513598720297

['add', False, None, None, True, True] 7.081359856193836

Listing 12.8: Example output from grid searching ETS models for the daily female births
dataset.

We can see that the best result was an RMSE of about 6.96 births. A naive model achieved
an RMSE of 6.93 births, meaning that the best performing ETS model is not skillful on this
problem. We can unpack the configuration of the best performing model as follows:

� Trend: Multiplicative

� Damped: False

� Seasonal: None

� Seasonal Periods: None

� Box-Cox Transform: True

� Remove Bias: True

What is surprising is that a model that assumed an multiplicative trend performed better
than one that didn’t. We would not know that this is the case unless we threw out assumptions
and grid searched models.

12.4 Case Study 2: Trend

The monthly shampoo sales dataset summarizes the monthly sales of shampoo over a three-year
period. For more information on this dataset, see Chapter 11 where it was introduced. You can
download the dataset directly from here:

� monthly-shampoo-sales.csv 2

Save the file with the filename monthly-shampoo-sales.csv in your current working di-
rectory. The dataset has three years, or 36 observations. We will use the first 24 for training
and the remaining 12 as the test set. The complete example grid searching the shampoo sales
univariate time series forecasting problem is listed below.

# grid search ets models for monthly shampoo sales

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

2https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv
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from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from pandas import read_csv

from numpy import array

# one-step Holt Winters Exponential Smoothing forecast

def exp_smoothing_forecast(history, config):

t,d,s,p,b,r = config

# define model

history = array(history)

model = ExponentialSmoothing(history, trend=t, damped=d, seasonal=s, seasonal_periods=p)

# fit model

model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = exp_smoothing_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config
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try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of exponential smoothing configs to try

def exp_smoothing_configs(seasonal=[None]):

models = list()

# define config lists

t_params = ['add', 'mul', None]

d_params = [True, False]

s_params = ['add', 'mul', None]

p_params = seasonal

b_params = [True, False]

r_params = [True, False]

# create config instances

for t in t_params:

for d in d_params:

for s in s_params:

for p in p_params:

for b in b_params:

for r in r_params:

cfg = [t,d,s,p,b,r]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('monthly-shampoo-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs
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cfg_list = exp_smoothing_configs()

# grid search

scores = grid_search(data[:,0], cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 12.9: Example of grid searching ETS models for the monthly shampoo sales dataset.

Running the example is fast given there are a small number of observations. Model configura-
tions and the RMSE are printed as the models are evaluated. The top three model configurations
and their error are reported at the end of the run. A truncated example of the results from
running the hyperparameter grid search are listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> Model[['mul', True, None, None, False, False]] 102.152

> Model[['mul', False, None, None, False, True]] 86.406

> Model[['mul', False, None, None, False, False]] 83.747

> Model[[None, False, None, None, False, True]] 99.416

> Model[[None, False, None, None, False, False]] 108.031

done

['mul', False, None, None, False, False] 83.74666940175238

['mul', False, None, None, False, True] 86.40648953786152

['mul', True, None, None, False, True] 95.33737598817238

Listing 12.10: Example output from grid searching ETS models for the monthly shampoo sales
dataset.

We can see that the best result was an RMSE of about 83.74 sales. A naive model achieved
an RMSE of 95.69 sales on this dataset, meaning that the best performing ETS model is skillful
on this problem. We can unpack the configuration of the best performing model as follows:

� Trend: Multiplicative

� Damped: False

� Seasonal: None

� Seasonal Periods: None

� Box-Cox Transform: False

� Remove Bias: False
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12.5 Case Study 3: Seasonality

The monthly mean temperatures dataset summarizes the monthly average air temperatures in
Nottingham Castle, England from 1920 to 1939 in degrees Fahrenheit. For more information on
this dataset, see Chapter 11 where it was introduced. You can download the dataset directly
from here:

� monthly-mean-temp.csv 3

Save the file with the filename monthly-mean-temp.csv in your current working directory.
The dataset has 20 years, or 240 observations. We will trim the dataset to the last five years of
data (60 observations) in order to speed up the model evaluation process and use the last year
or 12 observations for the test set.

# trim dataset to 5 years

data = data[-(5*12):]

Listing 12.11: Example of reducing the size of the dataset.

The period of the seasonal component is about one year, or 12 observations. We will use this
as the seasonal period in the call to the exp smoothing configs() function when preparing
the model configurations.

# model configs

cfg_list = exp_smoothing_configs(seasonal=[0, 12])

Listing 12.12: Example of specifying some seasonal configurations.

The complete example grid searching the monthly mean temperature time series forecasting
problem is listed below.

# grid search ets hyperparameters for monthly mean temp dataset

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from pandas import read_csv

from numpy import array

# one-step Holt Winters Exponential Smoothing forecast

def exp_smoothing_forecast(history, config):

t,d,s,p,b,r = config

# define model

history = array(history)

model = ExponentialSmoothing(history, trend=t, damped=d, seasonal=s, seasonal_periods=p)

# fit model

model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

3https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv
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return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = exp_smoothing_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel
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executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of exponential smoothing configs to try

def exp_smoothing_configs(seasonal=[None]):

models = list()

# define config lists

t_params = ['add', 'mul', None]

d_params = [True, False]

s_params = ['add', 'mul', None]

p_params = seasonal

b_params = [True, False]

r_params = [True, False]

# create config instances

for t in t_params:

for d in d_params:

for s in s_params:

for p in p_params:

for b in b_params:

for r in r_params:

cfg = [t,d,s,p,b,r]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('monthly-mean-temp.csv', header=0, index_col=0)

data = series.values

# trim dataset to 5 years

data = data[-(5*12):]

# data split

n_test = 12

# model configs

cfg_list = exp_smoothing_configs(seasonal=[0,12])

# grid search

scores = grid_search(data[:,0], cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 12.13: Example of grid searching ETS models for the monthly mean temperature dataset.

Running the example is relatively slow given the large amount of data. Model configurations
and the RMSE are printed as the models are evaluated. The top three model configurations
and their error are reported at the end of the run. A truncated example of the results from
running the hyperparameter grid search are listed below.
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Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> Model[['mul', True, None, 12, False, False]] 4.593

> Model[['mul', False, 'add', 12, True, True]] 4.230

> Model[['mul', False, 'add', 12, True, False]] 4.157

> Model[['mul', False, 'add', 12, False, True]] 1.538

> Model[['mul', False, 'add', 12, False, False]] 1.520

done

[None, False, 'add', 12, False, False] 1.5015527325330889

[None, False, 'add', 12, False, True] 1.5015531225114707

[None, False, 'mul', 12, False, False] 1.501561363221282

Listing 12.14: Example output from grid searching ETS models for the monthly mean
temperature dataset.

We can see that the best result was an RMSE of about 1.50 degrees. This is the same RMSE
found by a naive model on this problem, suggesting that the best ETS model sits on the border
of being unskillful. We can unpack the configuration of the best performing model as follows:

� Trend: None

� Damped: False

� Seasonal: Additive

� Seasonal Periods: 12

� Box-Cox Transform: False

� Remove Bias: False

12.6 Case Study 4: Trend and Seasonality

The monthly car sales dataset summarizes the monthly car sales in Quebec, Canada between
1960 and 1968. For more information on this dataset, see Chapter 11 where it was introduced.
You can download the dataset directly from here:

� monthly-car-sales.csv 4

Save the file with the filename monthly-car-sales.csv in your current working directory.
The dataset has 9 years, or 108 observations. We will use the last year or 12 observations as
the test set. The period of the seasonal component could be six months or 12 months. We
will try both as the seasonal period in the call to the exp smoothing configs() function when
preparing the model configurations.

4https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
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# model configs

cfg_list = exp_smoothing_configs(seasonal=[0,6,12])

Listing 12.15: Example of specifying some seasonal configurations.

The complete example grid searching the monthly car sales time series forecasting problem
is listed below.

# grid search ets models for monthly car sales

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.holtwinters import ExponentialSmoothing

from sklearn.metrics import mean_squared_error

from pandas import read_csv

from numpy import array

# one-step Holt Winters Exponential Smoothing forecast

def exp_smoothing_forecast(history, config):

t,d,s,p,b,r = config

# define model

history = array(history)

model = ExponentialSmoothing(history, trend=t, damped=d, seasonal=s, seasonal_periods=p)

# fit model

model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = exp_smoothing_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error
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error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of exponential smoothing configs to try

def exp_smoothing_configs(seasonal=[None]):

models = list()

# define config lists

t_params = ['add', 'mul', None]

d_params = [True, False]

s_params = ['add', 'mul', None]

p_params = seasonal

b_params = [True, False]

r_params = [True, False]

# create config instances

for t in t_params:

for d in d_params:

for s in s_params:

for p in p_params:
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for b in b_params:

for r in r_params:

cfg = [t,d,s,p,b,r]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

cfg_list = exp_smoothing_configs(seasonal=[0,6,12])

# grid search

scores = grid_search(data[:,0], cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 12.16: Example of grid searching ETS models for the monthly car sales dataset.

Running the example is slow given the large amount of data. Model configurations and the
RMSE are printed as the models are evaluated. The top three model configurations and their
error are reported at the end of the run. A truncated example of the results from running the
hyperparameter grid search are listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> Model[['mul', True, 'add', 6, False, False]] 3745.142

> Model[['mul', True, 'add', 12, True, True]] 2203.354

> Model[['mul', True, 'add', 12, True, False]] 2284.172

> Model[['mul', True, 'add', 12, False, True]] 2842.605

> Model[['mul', True, 'add', 12, False, False]] 2086.899

done

['add', False, 'add', 12, False, True] 1672.5539372356582

['add', False, 'add', 12, False, False] 1680.845043013083

['add', True, 'add', 12, False, False] 1696.1734099400082

Listing 12.17: Example output from grid searching ETS models for the monthly car sales
dataset.

We can see that the best result was an RMSE of about 1,672 sales. A naive model achieved
an RMSE of 1841.15 sales on this problem, suggesting that the best performing ETS model is
skillful. We can unpack the configuration of the best performing model as follows:

� Trend: Additive

� Damped: False

� Seasonal: Additive
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� Seasonal Periods: 12

� Box-Cox Transform: False

� Remove Bias: True

This is a little surprising as I would have guessed that a six-month seasonal model would be
the preferred approach.

12.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Data Transforms. Update the framework to support configurable data transforms such
as normalization and standardization.

� Plot Forecast. Update the framework to re-fit a model with the best configuration and
forecast the entire test dataset, then plot the forecast compared to the actual observations
in the test set.

� Tune Amount of History. Update the framework to tune the amount of historical data
used to fit the model (e.g. in the case of the 10 years of max temperature data).

If you explore any of these extensions, I’d love to know.

12.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

12.8.1 Books

� Chapter 7 Exponential smoothing, Forecasting: principles and practice, 2013.
https://amzn.to/2xlJsfV

� Section 6.4. Introduction to Time Series Analysis, Engineering Statistics Handbook, 2012.
https://www.itl.nist.gov/div898/handbook/

� Practical Time Series Forecasting with R, 2016.
https://amzn.to/2LGKzKm

12.8.2 APIs

� statsmodels.tsa.holtwinters.ExponentialSmoothing API.

� statsmodels.tsa.holtwinters.HoltWintersResults API.

https://amzn.to/2xlJsfV
https://www.itl.nist.gov/div898/handbook/
https://amzn.to/2LGKzKm
http://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.HoltWintersResults.html
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12.8.3 Articles

� Exponential smoothing, Wikipedia.
https://en.wikipedia.org/wiki/Exponential_smoothing

12.9 Summary

In this tutorial, you discovered how to develop a framework for grid searching all of the
exponential smoothing model hyperparameters for univariate time series forecasting. Specifically,
you learned:

� How to develop a framework for grid searching ETS models from scratch using walk-forward
validation.

� How to grid search ETS model hyperparameters for daily time series data for births.

� How to grid search ETS model hyperparameters for monthly time series data for shampoo
sales, car sales and temperature.

12.9.1 Next

In the next lesson, you will discover how to develop autoregressive models for univariate time
series forecasting problems.

https://en.wikipedia.org/wiki/Exponential_smoothing


Chapter 13

How to Develop SARIMA Models for
Univariate Forecasting

The Seasonal Autoregressive Integrated Moving Average, or SARIMA, model is an approach
for modeling univariate time series data that may contain trend and seasonal components. It
is an effective approach for time series forecasting, although it requires careful analysis and
domain expertise in order to configure the seven or more model hyperparameters. An alternative
approach to configuring the model that makes use of fast and parallel modern hardware is to
grid search a suite of hyperparameter configurations in order to discover what works best. Often,
this process can reveal non-intuitive model configurations that result in lower forecast error
than those configurations specified through careful analysis.

In this tutorial, you will discover how to develop a framework for grid searching all of the
SARIMA model hyperparameters for univariate time series forecasting. After completing this
tutorial, you will know:

� How to develop a framework for grid searching SARIMA models from scratch using
walk-forward validation.

� How to grid search SARIMA model hyperparameters for daily time series data for births.

� How to grid search SARIMA model hyperparameters for monthly time series data for
shampoo sales, car sales, and temperature.

Let’s get started.

13.1 Tutorial Overview

This tutorial is divided into five parts; they are:

1. Develop a Grid Search Framework

2. Case Study 1: No Trend or Seasonality

3. Case Study 2: Trend

4. Case Study 3: Seasonality

5. Case Study 4: Trend and Seasonality

228
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13.2 Develop a Grid Search Framework

In this section, we will develop a framework for grid searching SARIMA model hyperparameters
for a given univariate time series forecasting problem. For more information on SARIMA for
time series forecasting, see Chapter 5. We will use the implementation of SARIMA provided by
the Statsmodels library. This model has hyperparameters that control the nature of the model
performed for the series, trend and seasonality, specifically:

� order: A tuple p, d, and q parameters for the modeling of the trend.

� seasonal order: A tuple of P, D, Q, and m parameters for the modeling the seasonality

� trend: A parameter for controlling a model of the deterministic trend as one of ‘n’, ‘c’,
‘t’, and ‘ct’ for no trend, constant, linear, and constant with linear trend, respectively.

If you know enough about your problem to specify one or more of these parameters, then
you should specify them. If not, you can try grid searching these parameters. We can start-off
by defining a function that will fit a model with a given configuration and make a one-step
forecast. The sarima forecast() below implements this behavior.

The function takes an array or list of contiguous prior observations and a list of configuration
parameters used to configure the model, specifically two tuples and a string for the trend
order, seasonal order trend, and parameter. We also try to make the model robust by relaxing
constraints, such as that the data must be stationary and that the MA transform be invertible.

# one-step sarima forecast

def sarima_forecast(history, config):

order, sorder, trend = config

# define model

model = SARIMAX(history, order=order, seasonal_order=sorder, trend=trend,

enforce_stationarity=False, enforce_invertibility=False)

# fit model

model_fit = model.fit(disp=False)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

Listing 13.1: Example of a function for making a SARIMA forecast.

In this tutorial, we will use the grid searching framework developed in Chapter 11 for tuning
and evaluating naive forecasting methods. One important modification to the framework is the
function used to perform the walk-forward validation of the model named walk forward validation().
This function must be updated to call the function for making an SARIMA forecast. The
updated version of the function is listed below.

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time step in the test set

for i in range(len(test)):
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# fit model and make forecast for history

yhat = sarima_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

Listing 13.2: Example of a function for walk-forward validation with SARIMA forecasts.

We’re nearly done. The only thing left to do is to define a list of model configurations to
try for a dataset. We can define this generically. The only parameter we may want to specify
is the periodicity of the seasonal component in the series, if one exists. By default, we will
assume no seasonal component. The sarima configs() function below will create a list of
model configurations to evaluate.

The configurations assume each of the AR, MA, and I components for trend and seasonality
are low order, e.g. off (0) or in [1,2]. You may want to extend these ranges if you believe the
order may be higher. An optional list of seasonal periods can be specified, and you could even
change the function to specify other elements that you may know about your time series. In
theory, there are 1,296 possible model configurations to evaluate, but in practice, many will not
be valid and will result in an error that we will trap and ignore.

# create a set of sarima configs to try

def sarima_configs(seasonal=[0]):

models = list()

# define config lists

p_params = [0, 1, 2]

d_params = [0, 1]

q_params = [0, 1, 2]

t_params = ['n','c','t','ct']

P_params = [0, 1, 2]

D_params = [0, 1]

Q_params = [0, 1, 2]

m_params = seasonal

# create config instances

for p in p_params:

for d in d_params:

for q in q_params:

for t in t_params:

for P in P_params:

for D in D_params:

for Q in Q_params:

for m in m_params:

cfg = [(p,d,q), (P,D,Q,m), t]

models.append(cfg)

return models

Listing 13.3: Example of a function for defining configurations for SARIMA models to grid
search.

We now have a framework for grid searching SARIMA model hyperparameters via one-step
walk-forward validation. It is generic and will work for any in-memory univariate time series
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provided as a list or NumPy array. We can make sure all the pieces work together by testing it
on a contrived 10-step dataset. The complete example is listed below.

# grid search sarima hyperparameters

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.statespace.sarimax import SARIMAX

from sklearn.metrics import mean_squared_error

# one-step sarima forecast

def sarima_forecast(history, config):

order, sorder, trend = config

# define model

model = SARIMAX(history, order=order, seasonal_order=sorder, trend=trend,

enforce_stationarity=False, enforce_invertibility=False)

# fit model

model_fit = model.fit(disp=False)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = sarima_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key
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key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of sarima configs to try

def sarima_configs(seasonal=[0]):

models = list()

# define config lists

p_params = [0, 1, 2]

d_params = [0, 1]

q_params = [0, 1, 2]

t_params = ['n','c','t','ct']

P_params = [0, 1, 2]

D_params = [0, 1]

Q_params = [0, 1, 2]

m_params = seasonal

# create config instances

for p in p_params:

for d in d_params:

for q in q_params:

for t in t_params:

for P in P_params:

for D in D_params:

for Q in Q_params:

for m in m_params:

cfg = [(p,d,q), (P,D,Q,m), t]
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models.append(cfg)

return models

if __name__ == '__main__':

# define dataset

data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

print(data)

# data split

n_test = 4

# model configs

cfg_list = sarima_configs()

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 13.4: Example of demonstrating the grid search infrastructure.

Running the example first prints the contrived time series dataset. Next, the model
configurations and their errors are reported as they are evaluated, truncated below for brevity.
Finally, the configurations and the error for the top three configurations are reported. We can
see that many models achieve perfect performance on this simple linearly increasing contrived
time series problem.

[10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

...

> Model[[(2, 0, 0), (2, 0, 0, 0), 'ct']] 0.001

> Model[[(2, 0, 0), (2, 0, 1, 0), 'ct']] 0.000

> Model[[(2, 0, 1), (0, 0, 0, 0), 'n']] 0.000

> Model[[(2, 0, 1), (0, 0, 1, 0), 'n']] 0.000

done

[(2, 1, 0), (1, 0, 0, 0), 'n'] 0.0

[(2, 1, 0), (2, 0, 0, 0), 'n'] 0.0

[(2, 1, 1), (1, 0, 1, 0), 'n'] 0.0

Listing 13.5: Example output from demonstrating the grid search infrastructure.

Now that we have a robust framework for grid searching SARIMA model hyperparameters,
let’s test it out on a suite of standard univariate time series datasets. The datasets were chosen
for demonstration purposes; I am not suggesting that a SARIMA model is the best approach
for each dataset; perhaps an ETS or something else would be more appropriate in some cases.

13.3 Case Study 1: No Trend or Seasonality

The daily female births dataset summarizes the daily total female births in California, USA in
1959. For more information on this dataset, see Chapter 11 where it was introduced. You can
download the dataset directly from here:
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� daily-total-female-births.csv 1

Save the file with the filename daily-total-female-births.csv in your current working
directory. The dataset has one year, or 365 observations. We will use the first 200 for training
and the remaining 165 as the test set. The complete example grid searching the daily female
univariate time series forecasting problem is listed below.

# grid search sarima hyperparameters for daily female dataset

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.statespace.sarimax import SARIMAX

from sklearn.metrics import mean_squared_error

from pandas import read_csv

# one-step sarima forecast

def sarima_forecast(history, config):

order, sorder, trend = config

# define model

model = SARIMAX(history, order=order, seasonal_order=sorder, trend=trend,

enforce_stationarity=False, enforce_invertibility=False)

# fit model

model_fit = model.fit(disp=False)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = sarima_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.

csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv
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# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of sarima configs to try

def sarima_configs(seasonal=[0]):

models = list()

# define config lists

p_params = [0, 1, 2]

d_params = [0, 1]

q_params = [0, 1, 2]

t_params = ['n','c','t','ct']

P_params = [0, 1, 2]

D_params = [0, 1]

Q_params = [0, 1, 2]

m_params = seasonal

# create config instances

for p in p_params:
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for d in d_params:

for q in q_params:

for t in t_params:

for P in P_params:

for D in D_params:

for Q in Q_params:

for m in m_params:

cfg = [(p,d,q), (P,D,Q,m), t]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('daily-total-female-births.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 165

# model configs

cfg_list = sarima_configs()

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 13.6: Example of grid searching SARIMA models for the daily female births dataset.

Running the example may take a while on modern hardware. Model configurations and the
RMSE are printed as the models are evaluated. The top three model configurations and their
error are reported at the end of the run.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> Model[[(2, 1, 2), (1, 0, 1, 0), 'ct']] 6.905

> Model[[(2, 1, 2), (2, 0, 0, 0), 'ct']] 7.031

> Model[[(2, 1, 2), (2, 0, 1, 0), 'ct']] 6.985

> Model[[(2, 1, 2), (1, 0, 2, 0), 'ct']] 6.941

> Model[[(2, 1, 2), (2, 0, 2, 0), 'ct']] 7.056

done

[(1, 0, 2), (1, 0, 1, 0), 't'] 6.770349800255089

[(0, 1, 2), (1, 0, 2, 0), 'ct'] 6.773217122759515

[(2, 1, 1), (2, 0, 2, 0), 'ct'] 6.886633191752254

Listing 13.7: Example output from grid searching SARIMA models for the daily female births
dataset.

We can see that the best result was an RMSE of about 6.77 births. A naive model achieved
an RMSE of 6.93 births suggesting that the best performing SARIMA model is skillful on this
problem. We can unpack the configuration of the best performing model as follows:

� Order: (1, 0, 2)
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� Seasonal Order: (1, 0, 1, 0)

� Trend Parameter: ‘t’ for linear trend

It is surprising that a configuration with some seasonal elements resulted in the lowest error.
I would not have guessed at this configuration and would have likely stuck with an ARIMA
model.

13.4 Case Study 2: Trend

The monthly shampoo sales dataset summarizes the monthly sales of shampoo over a three-year
period. For more information on this dataset, see Chapter 11 where it was introduced. You can
download the dataset directly from here:

� monthly-shampoo-sales.csv 2

Save the file with the filename monthly-shampoo-sales.csv in your current working di-
rectory. The dataset has three years, or 36 observations. We will use the first 24 for training
and the remaining 12 as the test set. The complete example grid searching the shampoo sales
univariate time series forecasting problem is listed below.

# grid search sarima hyperparameters for monthly shampoo sales dataset

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.statespace.sarimax import SARIMAX

from sklearn.metrics import mean_squared_error

from pandas import read_csv

# one-step sarima forecast

def sarima_forecast(history, config):

order, sorder, trend = config

# define model

model = SARIMAX(history, order=order, seasonal_order=sorder, trend=trend,

enforce_stationarity=False, enforce_invertibility=False)

# fit model

model_fit = model.fit(disp=False)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

2https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv
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# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = sarima_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])
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return scores

# create a set of sarima configs to try

def sarima_configs(seasonal=[0]):

models = list()

# define config lists

p_params = [0, 1, 2]

d_params = [0, 1]

q_params = [0, 1, 2]

t_params = ['n','c','t','ct']

P_params = [0, 1, 2]

D_params = [0, 1]

Q_params = [0, 1, 2]

m_params = seasonal

# create config instances

for p in p_params:

for d in d_params:

for q in q_params:

for t in t_params:

for P in P_params:

for D in D_params:

for Q in Q_params:

for m in m_params:

cfg = [(p,d,q), (P,D,Q,m), t]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('monthly-shampoo-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

cfg_list = sarima_configs()

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 13.8: Example of grid searching SARIMA models for the monthly shampoo sales dataset.

Running the example may take a while on modern hardware. Model configurations and the
RMSE are printed as the models are evaluated. The top three model configurations and their
error are reported at the end of the run. A truncated example of the results from running the
hyperparameter grid search are listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> Model[[(2, 1, 2), (1, 0, 1, 0), 'ct']] 68.891

> Model[[(2, 1, 2), (2, 0, 0, 0), 'ct']] 75.406
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> Model[[(2, 1, 2), (1, 0, 2, 0), 'ct']] 80.908

> Model[[(2, 1, 2), (2, 0, 1, 0), 'ct']] 78.734

> Model[[(2, 1, 2), (2, 0, 2, 0), 'ct']] 82.958

done

[(0, 1, 2), (2, 0, 2, 0), 't'] 54.767582003072874

[(0, 1, 1), (2, 0, 2, 0), 'ct'] 58.69987083057107

[(1, 1, 2), (0, 0, 1, 0), 't'] 58.709089340600094

Listing 13.9: Example output from grid searching naive models for the monthly shampoo sales
dataset.

We can see that the best result was an RMSE of about 54.76 sales. A naive model achieved
an RMSE of 95.69 sales on this dataset, meaning that the best performing SARIMA model
is skillful on this problem. We can unpack the configuration of the best performing model as
follows:

� Trend Order: (0, 1, 2)

� Seasonal Order: (2, 0, 2, 0)

� Trend Parameter: ‘t’ (linear trend)

13.5 Case Study 3: Seasonality

The monthly mean temperatures dataset summarizes the monthly average air temperatures in
Nottingham Castle, England from 1920 to 1939 in degrees Fahrenheit. For more information on
this dataset, see Chapter 11 where it was introduced. You can download the dataset directly
from here:

� monthly-mean-temp.csv 3

Save the file with the filename monthly-mean-temp.csv in your current working directory.
The dataset has 20 years, or 240 observations. We will trim the dataset to the last five years of
data (60 observations) in order to speed up the model evaluation process and use the last year
or 12 observations for the test set.

# trim dataset to 5 years

data = data[-(5*12):]

Listing 13.10: Example of reducing the size of the dataset.

The period of the seasonal component is about one year, or 12 observations. We will use
this as the seasonal period in the call to the sarima configs() function when preparing the
model configurations.

# model configs

cfg_list = sarima_configs(seasonal=[0, 12])

Listing 13.11: Example of specifying some seasonal configurations.

3https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-mean-temp.csv
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The complete example grid searching the monthly mean temperature time series forecasting
problem is listed below.

# grid search sarima hyperparameters for monthly mean temp dataset

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.statespace.sarimax import SARIMAX

from sklearn.metrics import mean_squared_error

from pandas import read_csv

# one-step sarima forecast

def sarima_forecast(history, config):

order, sorder, trend = config

# define model

model = SARIMAX(history, order=order, seasonal_order=sorder, trend=trend,

enforce_stationarity=False, enforce_invertibility=False)

# fit model

model_fit = model.fit(disp=False)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = sarima_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None
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# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)

else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of sarima configs to try

def sarima_configs(seasonal=[0]):

models = list()

# define config lists

p_params = [0, 1, 2]

d_params = [0, 1]

q_params = [0, 1, 2]

t_params = ['n','c','t','ct']

P_params = [0, 1, 2]

D_params = [0, 1]

Q_params = [0, 1, 2]

m_params = seasonal

# create config instances

for p in p_params:

for d in d_params:

for q in q_params:

for t in t_params:

for P in P_params:

for D in D_params:

for Q in Q_params:

for m in m_params:
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cfg = [(p,d,q), (P,D,Q,m), t]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('monthly-mean-temp.csv', header=0, index_col=0)

data = series.values

# trim dataset to 5 years

data = data[-(5*12):]

# data split

n_test = 12

# model configs

cfg_list = sarima_configs(seasonal=[0, 12])

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 13.12: Example of grid searching SARIMA models for the monthly mean temperature
dataset.

Running the example may take a while on modern hardware. Model configurations and the
RMSE are printed as the models are evaluated. The top three model configurations and their
error are reported at the end of the run. A truncated example of the results from running the
hyperparameter grid search are listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> Model[[(2, 1, 2), (2, 1, 0, 12), 't']] 4.599

> Model[[(2, 1, 2), (1, 1, 0, 12), 'ct']] 2.477

> Model[[(2, 1, 2), (2, 0, 0, 12), 'ct']] 2.548

> Model[[(2, 1, 2), (2, 0, 1, 12), 'ct']] 2.893

> Model[[(2, 1, 2), (2, 1, 0, 12), 'ct']] 5.404

done

[(0, 0, 0), (1, 0, 1, 12), 'n'] 1.5577613610905712

[(0, 0, 0), (1, 1, 0, 12), 'n'] 1.6469530713847962

[(0, 0, 0), (2, 0, 0, 12), 'n'] 1.7314448163607488

Listing 13.13: Example output from grid searching SARIMA models for the monthly mean
temperature dataset.

We can see that the best result was an RMSE of about 1.55 degrees. A naive model achieved
an RMSE of 1.50 degrees, suggesting that the best performing SARIMA model is not skillful on
this problem. We can unpack the configuration of the best performing model as follows:

� Trend Order: (0, 0, 0)

� Seasonal Order: (1, 0, 1, 12)



13.6. Case Study 4: Trend and Seasonality 244

� Trend Parameter: ‘n’ (no trend)

As we would expect, the model has no trend component and a 12-month seasonal ARIMA
component.

13.6 Case Study 4: Trend and Seasonality

The monthly car sales dataset summarizes the monthly car sales in Quebec, Canada between
1960 and 1968. For more information on this dataset, see Chapter 11 where it was introduced.
You can download the dataset directly from here:

� monthly-car-sales.csv 4

Save the file with the filename monthly-car-sales.csv in your current working directory.
The dataset has 9 years, or 108 observations. We will use the last year or 12 observations as the
test set. The period of the seasonal component could be six months or 12 months. We will try
both as the seasonal period in the call to the sarima configs() function when preparing the
model configurations.

# model configs

cfg_list = sarima_configs(seasonal=[0,6,12])

Listing 13.14: Example of specifying some seasonal configurations.

The complete example grid searching the monthly car sales time series forecasting problem
is listed below.

# grid search sarima hyperparameters for monthly car sales dataset

from math import sqrt

from multiprocessing import cpu_count

from joblib import Parallel

from joblib import delayed

from warnings import catch_warnings

from warnings import filterwarnings

from statsmodels.tsa.statespace.sarimax import SARIMAX

from sklearn.metrics import mean_squared_error

from pandas import read_csv

# one-step sarima forecast

def sarima_forecast(history, config):

order, sorder, trend = config

# define model

model = SARIMAX(history, order=order, seasonal_order=sorder, trend=trend,

enforce_stationarity=False, enforce_invertibility=False)

# fit model

model_fit = model.fit(disp=False)

# make one step forecast

yhat = model_fit.predict(len(history), len(history))

return yhat[0]

# root mean squared error or rmse

4https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
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def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = sarima_forecast(history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

return error

# score a model, return None on failure

def score_model(data, n_test, cfg, debug=False):

result = None

# convert config to a key

key = str(cfg)

# show all warnings and fail on exception if debugging

if debug:

result = walk_forward_validation(data, n_test, cfg)

else:

# one failure during model validation suggests an unstable config

try:

# never show warnings when grid searching, too noisy

with catch_warnings():

filterwarnings("ignore")

result = walk_forward_validation(data, n_test, cfg)

except:

error = None

# check for an interesting result

if result is not None:

print(' > Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test, parallel=True):

scores = None

if parallel:

# execute configs in parallel

executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')

tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)

scores = executor(tasks)
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else:

scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# remove empty results

scores = [r for r in scores if r[1] != None]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a set of sarima configs to try

def sarima_configs(seasonal=[0]):

models = list()

# define config lists

p_params = [0, 1, 2]

d_params = [0, 1]

q_params = [0, 1, 2]

t_params = ['n','c','t','ct']

P_params = [0, 1, 2]

D_params = [0, 1]

Q_params = [0, 1, 2]

m_params = seasonal

# create config instances

for p in p_params:

for d in d_params:

for q in q_params:

for t in t_params:

for P in P_params:

for D in D_params:

for Q in Q_params:

for m in m_params:

cfg = [(p,d,q), (P,D,Q,m), t]

models.append(cfg)

return models

if __name__ == '__main__':

# load dataset

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

cfg_list = sarima_configs(seasonal=[0,6,12])

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 13.15: Example of grid searching SARIMA models for the monthly car sales dataset.

Running the example may take a while on modern hardware. Model configurations and the
RMSE are printed as the models are evaluated. The top three model configurations and their
error are reported at the end of the run. A truncated example of the results from running the
hyperparameter grid search are listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
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running the example a few times.

...

> Model[[(2, 1, 2), (2, 0, 2, 12), 'ct']] 10710.462

> Model[[(2, 1, 2), (2, 1, 2, 6), 'ct']] 2183.568

> Model[[(2, 1, 2), (2, 1, 0, 12), 'ct']] 2105.800

> Model[[(2, 1, 2), (2, 1, 1, 12), 'ct']] 2330.361

> Model[[(2, 1, 2), (2, 1, 2, 12), 'ct']] 31580326686.803

done

[(0, 0, 0), (1, 1, 0, 12), 't'] 1551.8423920342414

[(0, 0, 0), (2, 1, 1, 12), 'c'] 1557.334614575545

[(0, 0, 0), (1, 1, 0, 12), 'c'] 1559.3276311282675

Listing 13.16: Example output from grid searching SARIMA models for the monthly car sales
dataset.

We can see that the best result was an RMSE of about 1,551.84 sales. A naive model achieved
an RMSE of 1,841.15 sales on this problem, suggesting that the best performing SARIMA model
is skillful. We can unpack the configuration of the best performing model as follows:

� Trend Order: (0, 0, 0)

� Seasonal Order: (1, 1, 0, 12)

� Trend Parameter: ‘t’ (linear trend)

13.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Data Transforms. Update the framework to support configurable data transforms such
as normalization and standardization.

� Plot Forecast. Update the framework to re-fit a model with the best configuration and
forecast the entire test dataset, then plot the forecast compared to the actual observations
in the test set.

� Tune Amount of History. Update the framework to tune the amount of historical data
used to fit the model (e.g. in the case of the 10 years of max temperature data).

If you explore any of these extensions, I’d love to know.

13.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.
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13.8.1 Books

� Chapter 8 ARIMA models, Forecasting: principles and practice, 2013.
https://amzn.to/2xlJsfV

� Chapter 7, Non-stationary Models, Introductory Time Series with R, 2009.
https://amzn.to/2smB9LR

13.8.2 APIs

� Statsmodels Time Series Analysis by State Space Methods.
http://www.statsmodels.org/dev/statespace.html

� statsmodels.tsa.statespace.sarimax.SARIMAX API.
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.

SARIMAX.html

� statsmodels.tsa.statespace.sarimax.SARIMAXResults API.
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.

SARIMAXResults.html

� Statsmodels SARIMAX Notebook.
http://www.statsmodels.org/dev/examples/notebooks/generated/statespace_sarimax_

stata.html

13.8.3 Articles

� Autoregressive integrated moving average, Wikipedia.
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

13.9 Summary

In this tutorial, you discovered how to develop a framework for grid searching all of the SARIMA
model hyperparameters for univariate time series forecasting. Specifically, you learned:

� How to develop a framework for grid searching SARIMA models from scratch using
walk-forward validation.

� How to grid search SARIMA model hyperparameters for daily time series data for births.

� How to grid search SARIMA model hyperparameters for monthly time series data for
shampoo sales, car sales and temperature.

13.9.1 Next

In the next lesson, you will discover how to develop deep learning models for univariate time
series forecasting problems.

https://amzn.to/2xlJsfV
https://amzn.to/2smB9LR
http://www.statsmodels.org/dev/statespace.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAXResults.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAXResults.html
http://www.statsmodels.org/dev/examples/notebooks/generated/statespace_sarimax_stata.html
http://www.statsmodels.org/dev/examples/notebooks/generated/statespace_sarimax_stata.html
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average


Chapter 14

How to Develop MLPs, CNNs and
LSTMs for Univariate Forecasting

Deep learning neural networks are capable of automatically learning and extracting features
from raw data. This feature of neural networks can be used for time series forecasting problems,
where models can be developed directly on the raw observations without the direct need to scale
the data using normalization and standardization or to make the data stationary by differencing.
Impressively, simple deep learning neural network models are capable of making skillful forecasts
as compared to naive models and tuned SARIMA models on univariate time series forecasting
problems that have both trend and seasonal components with no pre-processing.

In this tutorial, you will discover how to develop a suite of deep learning models for univariate
time series forecasting. After completing this tutorial, you will know:

� How to develop a robust test harness using walk-forward validation for evaluating the
performance of neural network models.

� How to develop and evaluate simple Multilayer Perceptron and convolutional neural
networks for time series forecasting.

� How to develop and evaluate LSTMs, CNN-LSTMs, and ConvLSTM neural network
models for time series forecasting.

Let’s get started.

14.1 Tutorial Overview

This tutorial is divided into five parts; they are:

1. Time Series Problem

2. Model Evaluation Test Harness

3. Multilayer Perceptron Model

4. Convolutional Neural Network Model

5. Recurrent Neural Network Models

249
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14.2 Time Series Problem

In this tutorial we will focus on one dataset and use it as the context to demonstrate the
development of a range of deep learning models for univariate time series forecasting. We will
use the monthly car sales dataset as this context as it includes the complexity of both trend and
seasonal elements. The monthly car sales dataset summarizes the monthly car sales in Quebec,
Canada between 1960 and 1968. For more information on this dataset, see Chapter 11 where it
was introduced. You can download the dataset directly from here:

� monthly-car-sales.csv 1

Save the file with the filename monthly-car-sales.csv in your current working directory.
The dataset is monthly and has nine years, or 108 observations. In our testing, will use the
last year, or 12 observations, as the test set. A line plot is created. The dataset has an obvious
trend and seasonal component. The period of the seasonal component could be six months or 12
months. From prior experiments, we know that a naive model can achieve a root mean squared
error, or RMSE, of 1,841.155 by taking the median of the observations at the three prior years
for the month being predicted (see Chapter 11); for example:

yhat = median(-12, -24, -36)

Listing 14.1: Example of an effective naive forecast model.

Where the negative indexes refer to observations in the series relative to the end of the
historical data for the month being predicted. From prior experiments, we know that a SARIMA
model can achieve an RMSE of 1,551.84 with the configuration of SARIMA(0, 0, 0),(1, 1,

0),12 where no elements are specified for the trend and a seasonal difference with a period of
12 is calculated and an AR model of one season is used (see Chapter 13).

The performance of the naive model provides a lower bound on a model that is considered
skillful. Any model that achieves a predictive performance of lower than 1,841.15 on the last
12 months has skill. The performance of the SARIMA model provides a measure of a good
model on the problem. Any model that achieves a predictive performance lower than 1,551.84
on the last 12 months should be adopted over a SARIMA model. Now that we have defined our
problem and expectations of model skill, we can look at defining the test harness.

14.3 Model Evaluation Test Harness

In this section, we will develop a test harness for developing and evaluating different types of
neural network models for univariate time series forecasting. This test harness is a modified
version of the framework presented in Chapter 11 and may cover much of the same of the same
ground. This section is divided into the following parts:

1. Train-Test Split

2. Series as Supervised Learning

3. Walk-Forward Validation

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-car-sales.csv
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4. Repeat Evaluation

5. Summarize Performance

6. Worked Example

14.3.1 Train-Test Split

The first step is to split the loaded series into train and test sets. We will use the first eight
years (96 observations) for training and the last 12 for the test set. The train test split()

function below will split the series taking the raw observations and the number of observations
to use in the test set as arguments.

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

Listing 14.2: Example of a function for splitting data into train and test sets.

14.3.2 Series as Supervised Learning

Next, we need to be able to frame the univariate series of observations as a supervised learning
problem so that we can train neural network models (covered in Chapter 4). A supervised
learning framing of a series means that the data needs to be split into multiple examples that
the model learn from and generalize across. Each sample must have both an input component
and an output component. The input component will be some number of prior observations,
such as three years or 36 time steps. The output component will be the total sales in the next
month because we are interested in developing a model to make one-step forecasts.

We can implement this using the shift() function on the Pandas DataFrame. It allows us
to shift a column down (forward in time) or back (backward in time). We can take the series as
a column of data, then create multiple copies of the column, shifted forward or backward in
time in order to create the samples with the input and output elements we require. When a
series is shifted down, NaN values are introduced because we don’t have values beyond the start
of the series. For example, the series defined as a column:

(t)

1

2

3

4

Listing 14.3: Example of a time series as a column of data.

Can be shifted and inserted as a column beforehand:

(t-1), (t)

Nan, 1

1, 2

2, 3

3, 4

4, NaN

Listing 14.4: Example of column time series data with an added shifted column.
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We can see that on the second row, the value 1 is provided as input as an observation at the
prior time step, and 2 is the next value in the series that can be predicted, or learned by the
model to be predicted when 1 is presented as input. Rows with NaN values can be removed. The
series to supervised() function below implements this behavior, allowing you to specify the
number of lag observations to use in the input and the number to use in the output for each
sample. It will also remove rows that have NaN values as they cannot be used to train or test a
model.

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

Listing 14.5: Example of a function for transforming a univariate series into a supervised learning
dataset.

Note, this is a more generic way of transforming a time series dataset into samples than the
specialized methods presented in Chapters 7, 8, and 9.

14.3.3 Walk-Forward Validation

Time series forecasting models can be evaluated on a test set using walk-forward validation.
Walk-forward validation is an approach where the model makes a forecast for each observation
in the test dataset one at a time. After each forecast is made for a time step in the test
dataset, the true observation for the forecast is added to the test dataset and made available to
the model. Simpler models can be refit with the observation prior to making the subsequent
prediction. More complex models, such as neural networks, are not refit given the much greater
computational cost. Nevertheless, the true observation for the time step can then be used as
part of the input for making the prediction on the next time step. First, the dataset is split into
train and test sets. We will call the train test split() function to perform this split and
pass in the pre-specified number of observations to use as the test data.

A model will be fit once on the training dataset for a given configuration. We will define a
generic model fit() function to perform this operation that can be filled in for the given type
of neural network that we may be interested in later. The function takes the training dataset
and the model configuration and returns the fit model ready for making predictions.

# fit a model

def model_fit(train, config):

return None

Listing 14.6: Example of a function for fitting a model with a configuration.



14.3. Model Evaluation Test Harness 253

Each time step of the test dataset is enumerated. A prediction is made using the fit model.
Again, we will define a generic function named model predict() that takes the fit model, the
history, and the model configuration and makes a single one-step prediction.

# forecast with a pre-fit model

def model_predict(model, history, config):

return 0.0

Listing 14.7: Example of a function for making a forecast with a fit model.

The prediction is added to a list of predictions and the true observation from the test set is
added to a list of observations that was seeded with all observations from the training dataset.
This list is built up during each step in the walk-forward validation, allowing the model to make
a one-step prediction using the most recent history. All of the predictions can then be compared
to the true values in the test set and an error measure calculated. We will calculate the root
mean squared error, or RMSE, between predictions and the true values.

RMSE is calculated as the square root of the average of the squared differences between
the forecasts and the actual values. The measure rmse() implements this below using the
mean squared error() scikit-learn function to first calculate the mean squared error, or MSE,
before calculating the square root.

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

Listing 14.8: Example of a function for calculating RMSE for a forecast.

The complete walk forward validation() function that ties all of this together is listed
below. It takes the dataset, the number of observations to use as the test set, and the
configuration for the model, and returns the RMSE for the model performance on the test set.

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

Listing 14.9: Example of a function for walk-forward validation of a forecast model configuration.
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14.3.4 Repeat Evaluation

Neural network models are stochastic. This means that, given the same model configuration
and the same training dataset, a different internal set of weights will result each time the model
is trained that will in turn have a different performance. This is a benefit, allowing the model to
be adaptive and find high performing configurations to complex problems. It is also a problem
when evaluating the performance of a model and in choosing a final model to use to make
predictions.

To address model evaluation, we will evaluate a model configuration multiple times via
walk-forward validation and report the error as the average error across each evaluation. This is
not always possible for large neural networks and may only make sense for small networks that
can be fit in minutes or hours. The repeat evaluate() function below implements this and
allows the number of repeats to be specified as an optional parameter that defaults to 30 and
returns a list of model performance scores: in this case, RMSE values.

# repeat evaluation of a config

def repeat_evaluate(data, config, n_test, n_repeats=30):

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

return scores

Listing 14.10: Example of a function for the repeated evaluation of a forecast model configuration.

14.3.5 Summarize Performance

Finally, we need to summarize the performance of a model from the multiple repeats. We
will summarize the performance first using summary statistics, specifically the mean and the
standard deviation. We will also plot the distribution of model performance scores using a box
and whisker plot to help get an idea of the spread of performance. The summarize scores()

function below implements this, taking the name of the model that was evaluated and the list
of scores from each repeated evaluation, printing the summary and showing a plot.

# summarize model performance

def summarize_scores(name, scores):

# print a summary

scores_m, score_std = mean(scores), std(scores)

print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std))

# box and whisker plot

pyplot.boxplot(scores)

pyplot.show()

Listing 14.11: Example of a function for summarizing the performance of a forecast model.

14.3.6 Worked Example

Now that we have defined the elements of the test harness, we can tie them all together and
define a simple persistence model. Specifically, we will calculate the median of a subset of
prior observations relative to the time to be forecasted. We do not need to fit a model so the
model fit() function will be implemented to simply return None.
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# fit a model

def model_fit(train, config):

return None

Listing 14.12: Example of a function for fitting a forecast model.

We will use the config to define a list of index offsets in the prior observations relative to
the time to be forecasted that will be used as the prediction. For example, 12 will use the
observation 12 months ago (-12) relative to the time to be forecasted.

# define config

config = [12, 24, 36]

Listing 14.13: Example of a configuration to evaluate.

The model predict() function can be implemented to use this configuration to collect the
observations, then return the median of those observations.

# forecast with a pre-fit model

def model_predict(model, history, config):

values = list()

for offset in config:

values.append(history[-offset])

return median(values)

Listing 14.14: Example of a function for making a naive forecast.

The complete example of using the framework with a simple persistence model is listed
below.

# persistence forecast for monthly car sales dataset

from math import sqrt

from numpy import median

from numpy import mean

from numpy import std

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# difference dataset

def difference(data, interval):

return [data[i] - data[i - interval] for i in range(interval, len(data))]

# fit a model

def model_fit(train, config):

return None

# forecast with a pre-fit model

def model_predict(model, history, config):
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values = list()

for offset in config:

values.append(history[-offset])

return median(values)

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# repeat evaluation of a config

def repeat_evaluate(data, config, n_test, n_repeats=30):

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

return scores

# summarize model performance

def summarize_scores(name, scores):

# print a summary

scores_m, score_std = mean(scores), std(scores)

print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std))

# box and whisker plot

pyplot.boxplot(scores)

pyplot.show()

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# define config

config = [12, 24, 36]

# grid search

scores = repeat_evaluate(data, config, n_test)

# summarize scores

summarize_scores('persistence', scores)

Listing 14.15: Example of demonstrating the forecast infrastructure with a naive model.

Running the example prints the RMSE of the model evaluated using walk-forward validation
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on the final 12 months of data. The model is evaluated 30 times, although, because the model
has no stochastic element, the score is the same each time.

...

> 1841.156

> 1841.156

> 1841.156

> 1841.156

> 1841.156

persistence: 1841.156 RMSE (+/- 0.000)

Listing 14.16: Example output from demonstrating the forecast infrastructure with a naive
model.

We can see that the RMSE of the model is 1841 sales, providing a lower-bound of performance
by which we can evaluate whether a model is skillful or not on the problem. A box and whisker
plot is also created, but is not reproduced here because there is no distribution to summarize,
e.g. the plot is not interesting in this case as all skill scores have the same value. Now that we
have a robust test harness, we can use it to evaluate a suite of neural network models.

14.4 Multilayer Perceptron Model

The first network that we will evaluate is a Multilayer Perceptron, or MLP for short. This is a
simple feedforward neural network model that should be evaluated before more elaborate models
are considered. MLPs can be used for time series forecasting by taking multiple observations at
prior time steps, called lag observations, and using them as input features and predicting one or
more time steps from those observations. This is exactly the framing of the problem provided by
the series to supervised() function in the previous section. The training dataset is therefore
a list of samples, where each sample has some number of observations from months prior to the
time being forecasted, and the forecast is the next month in the sequence. For example:

X, y

month1, month2, month3, month4

month2, month3, month4, month5

month3, month4, month5, month6

...

Listing 14.17: Example framing of the forecast problem for training a model.

The model will attempt to generalize over these samples, such that when a new sample is
provided beyond what is known by the model, it can predict something useful; for example:

X, y

month4, month5, month6, ???

Listing 14.18: Example framing of the forecast problem for making a forecast.

We will implement a simple MLP using the Keras deep learning library. For more details
on modeling a univariate time series with an MLP, see Chapter 7. The model will have an
input layer with some number of prior observations. This can be specified using the input dim

argument when we define the first hidden layer. The model will have a single hidden layer with
some number of nodes, then a single output layer. We will use the rectified linear activation
function on the hidden layer as it performs well. We will use a linear activation function (the
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default) on the output layer because we are predicting a continuous value. The loss function for
the network will be the mean squared error loss, or MSE, and we will use the efficient Adam
flavor of stochastic gradient descent to train the network.

# define model

model = Sequential()

model.add(Dense(n_nodes, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

Listing 14.19: Example of defining an MLP forecast model.

The model will be fit for some number of training epochs (exposures to the training data)
and batch size can be specified to define how often the weights are updated within each epoch.
The model fit() function for fitting an MLP model on the training dataset is listed below.
The function expects the config to be a list with the following configuration hyperparameters:

� n input: The number of lag observations to use as input to the model.

� n nodes: The number of nodes to use in the hidden layer.

� n epochs: The number of times to expose the model to the whole training dataset.

� n batch: The number of samples within an epoch after which the weights are updated.

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch = config

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

# define model

model = Sequential()

model.add(Dense(n_nodes, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 14.20: Example of a function for defining and fitting a MLP forecast model.

Making a prediction with a fit MLP model is as straightforward as calling the predict()

function and passing in one sample worth of input values required to make the prediction.

# make a prediction

yhat = model.predict(x_input, verbose=0)

Listing 14.21: Example of making a prediction with a fit MLP model.

In order to make a prediction beyond the limit of known data, this requires that the last n
known observations are taken as an array and used as input. The predict() function expects
one or more samples of inputs when making a prediction, so providing a single sample requires
the array to have the shape [1, n input], where n input is the number of time steps that the
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model expects as input. Similarly, the predict() function returns an array of predictions, one
for each sample provided as input. In the case of one prediction, there will be an array with one
value. The model predict() function below implements this behavior, taking the model, the
prior observations, and model configuration as arguments, formulating an input sample and
making a one-step prediction that is then returned.

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _ = config

# prepare data

x_input = array(history[-n_input:]).reshape(1, n_input)

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]

Listing 14.22: Example of a function for making a forecast with a fit MLP model.

We now have everything we need to evaluate an MLP model on the monthly car sales dataset.
Model hyperparameters were chosen with a little trial and error and are listed below. The model
may not be optimal for the problem and improvements could be made via grid searching. For
details on how, see Chapter 15.

� n input: 24 (e.g. 24 months)

� n nodes: 500

� n epochs: 100

� n batch: 100

This configuration can be defined as a list:

# define config

config = [24, 500, 100, 100]

Listing 14.23: Example of good configuration for an MLP forecast model.

Note that when the training data is framed as a supervised learning problem, there are only
72 samples that can be used to train the model. Using a batch size of 72 or more means that the
model is being trained using batch gradient descent instead of mini-batch gradient descent. This
is often used for small datasets and means that weight updates and gradient calculations are
performed at the end of each epoch, instead of multiple times within each epoch. The complete
code example is listed below.

# evaluate mlp for monthly car sales dataset

from math import sqrt

from numpy import array

from numpy import mean

from numpy import std

from pandas import DataFrame

from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential
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from keras.layers import Dense

from matplotlib import pyplot

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch = config

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

# define model

model = Sequential()

model.add(Dense(n_nodes, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _ = config

# prepare data

x_input = array(history[-n_input:]).reshape(1, n_input)

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()
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# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# repeat evaluation of a config

def repeat_evaluate(data, config, n_test, n_repeats=30):

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

return scores

# summarize model performance

def summarize_scores(name, scores):

# print a summary

scores_m, score_std = mean(scores), std(scores)

print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std))

# box and whisker plot

pyplot.boxplot(scores)

pyplot.show()

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# define config

config = [24, 500, 100, 100]

# grid search

scores = repeat_evaluate(data, config, n_test)

# summarize scores

summarize_scores('mlp', scores)

Listing 14.24: Example of an MLP model for forecasting monthly car sales.

Running the example prints the RMSE for each of the 30 repeated evaluations of the model.
At the end of the run, the average and standard deviation RMSE are reported of about 1,526
sales. We can see that, on average, the chosen configuration has better performance than both
the naive model (1,841.155) and the SARIMA model (1,551.842). This is impressive given that
the model operated on the raw data directly without scaling or the data being made stationary.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.
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...

> 1458.993

> 1643.383

> 1457.925

> 1558.934

> 1708.278

mlp: 1526.688 RMSE (+/- 134.789)

Listing 14.25: Example output from an MLP model for forecasting monthly car sales.

A box and whisker plot of the RMSE scores is created to summarize the spread of the
performance for the model. This helps to understand the spread of the scores. We can see
that although on average the performance of the model is impressive, the spread is large. The
standard deviation is a little more than 134 sales, meaning a worse case model run that is 2
or 3 standard deviations in error from the mean error may be worse than the naive model. A
challenge in using the MLP model is in harnessing the higher skill and minimizing the variance
of the model across multiple runs.

This problem applies generally for neural networks. There are many strategies that you
could use, but perhaps the simplest is simply to train multiple final models on all of the available
data and use them in an ensemble when making predictions, e.g. the prediction is the average
of 10-to-30 models.
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Figure 14.1: Box and Whisker Plot of Multilayer Perceptron RMSE Forecasting Car Sales.

14.5 Convolutional Neural Network Model

Convolutional Neural Networks, or CNNs, are a type of neural network developed for two-
dimensional image data, although they can be used for one-dimensional data such as sequences of
text and time series. When operating on one-dimensional data, the CNN reads across a sequence
of lag observations and learns to extract features that are relevant for making a prediction. For
more information on using CNNs for univariate time series forecasting, see Chapter 8. We will
define a CNN with two convolutional layers for extracting features from the input sequences.
Each will have a configurable number of filters and kernel size and will use the rectified linear
activation function. The number of filters determines the number of parallel fields on which the
weighted inputs are read and projected. The kernel size defines the number of time steps read
within each snapshot as the network reads along the input sequence.

# define convolutional layers

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu',

input_shape=(n_input, 1)))

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu'))

Listing 14.26: Example of defining convolutional layers.

A max pooling layer is used after convolutional layers to distill the weighted input features
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into those that are most salient, reducing the input size by 1/4. The pooled inputs are flattened
to one long vector before being interpreted and used to make a one-step prediction.

# define pooling and output layers

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(1))

Listing 14.27: Example of defining pooling, flatten and output layers.

The CNN model expects input data to be in the form of multiple samples, where each sample
has multiple input time steps, the same as the MLP in the previous section. One difference is
that the CNN can support multiple features or types of observations at each time step, which are
interpreted as channels of an image. We only have a single feature at each time step, therefore
the required three-dimensional shape of the input data will be [n samples, n input, 1].

# reshape training data

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1))

Listing 14.28: Example of reshaping input data for the CNN model.

The model fit() function for fitting the CNN model on the training dataset is listed below.
The model takes the following five configuration parameters as a list:

� n input: The number of lag observations to use as input to the model.

� n filters: The number of parallel filters.

� n kernel: The number of time steps considered in each read of the input sequence.

� n epochs: The number of times to expose the model to the whole training dataset.

� n batch: The number of samples within an epoch after which the weights are updated.

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_filters, n_kernel, n_epochs, n_batch = config

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1))

# define model

model = Sequential()

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu',

input_shape=(n_input, 1)))

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 14.29: Example of a function for defining and fitting a CNN forecast model.
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Making a prediction with the fit CNN model is very much like making a prediction with
the fit MLP model in the previous section. The one difference is in the requirement that we
specify the number of features observed at each time step, which in this case is 1. Therefore,
when making a single one-step prediction, the shape of the input array must be: [1, n input,

1]. The model predict() function below implements this behavior.

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, _ = config

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]

Listing 14.30: Example of a function for making a forecast with a fit CNN model.

Model hyperparameters were chosen with a little trial and error and are listed below. The
model may not be optimal for the problem and improvements could be made via grid searching.
For details on how, see Chapter 15.

� n input: 36 (e.g. 3 years or 3 × 12)

� n filters: 256

� n kernel: 3

� n epochs: 100

� n batch: 100 (e.g. batch gradient descent)

This can be specified as a list as follows:

# define config

config = [36, 256, 3, 100, 100]

Listing 14.31: Example of good configuration for a CNN forecast model.

Tying all of this together, the complete example is listed below.

# evaluate cnn for monthly car sales dataset

from math import sqrt

from numpy import array

from numpy import mean

from numpy import std

from pandas import DataFrame

from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from matplotlib import pyplot
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# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_filters, n_kernel, n_epochs, n_batch = config

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1))

# define model

model = Sequential()

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu',

input_shape=(n_input, 1)))

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, _ = config

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]
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# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# repeat evaluation of a config

def repeat_evaluate(data, config, n_test, n_repeats=30):

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

return scores

# summarize model performance

def summarize_scores(name, scores):

# print a summary

scores_m, score_std = mean(scores), std(scores)

print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std))

# box and whisker plot

pyplot.boxplot(scores)

pyplot.show()

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# define config

config = [36, 256, 3, 100, 100]

# grid search

scores = repeat_evaluate(data, config, n_test)

# summarize scores

summarize_scores('cnn', scores)

Listing 14.32: Example of a CNN model for forecasting monthly car sales.

Running the example first prints the RMSE for each repeated evaluation of the model. At
the end of the run, we can see that indeed the model is skillful, achieving an average RMSE
of 1,524.06, which is better than the naive model, the SARIMA model, and even the MLP
model in the previous section. This is impressive given that the model operated on the raw data
directly without scaling or the data being made stationary.
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The standard deviation of the score is large, at about 57 sales, but is 1
3

the size of the
standard deviation observed with the MLP model in the previous section. We have some
confidence that in a bad-case scenario (3 standard deviations), the model RMSE will remain
below (better than) the performance of the naive model.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> 1489.795

> 1652.620

> 1537.349

> 1443.777

> 1567.179

cnn: 1524.067 RMSE (+/- 57.148)

Listing 14.33: Example output from a CNN model for forecasting monthly car sales.

A box and whisker plot of the scores is created to help understand the spread of error across
the runs. We can see that the spread does seem to be biased towards larger error values, as we
would expect, although the upper whisker of the plot (in this case, the largest error that are not
outliers) is still limited at an RMSE of 1,650 sales.
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Figure 14.2: Box and Whisker Plot of Convolutional Neural Network RMSE Forecasting Car
Sales.

14.6 Recurrent Neural Network Models

Recurrent neural networks, or RNNs, are those types of neural networks that use an output of
the network from a prior step as an input in attempt to automatically learn across sequence data.
The Long Short-Term Memory, or LSTM, network is a type of RNN whose implementation
addresses the general difficulties in training RNNs on sequence data that results in a stable
model. It achieves this by learning the weights for internal gates that control the recurrent
connections within each node. Although developed for sequence data, LSTMs have not proven
effective on time series forecasting problems where the output is a function of recent observations,
e.g. an autoregressive type forecasting problem, such as the car sales dataset. Nevertheless, we
can develop LSTM models for autoregressive problems and use them as a point of comparison
with other neural network models. For more information on LSTMs for univariate time series
forecasting, see Chapter 9. In this section, we will explore three variations on the LSTM model
for univariate time series forecasting; they are:

� Vanilla LSTM: The LSTM network as-is.

� CNN-LSTM: A CNN network that learns input features and an LSTM that interprets
them.
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� ConvLSTM: A combination of CNNs and LSTMs where the LSTM units read input
data using the convolutional process of a CNN.

14.6.1 LSTM

The LSTM neural network can be used for univariate time series forecasting. As an RNN, it
will read each time step of an input sequence one step at a time. The LSTM has an internal
memory allowing it to accumulate internal state as it reads across the steps of a given input
sequence. At the end of the sequence, each node in a layer of hidden LSTM units will output a
single value. This vector of values summarizes what the LSTM learned or extracted from the
input sequence. This can be interpreted by a fully connected layer before a final prediction is
made.

# define model

model = Sequential()

model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, 1)))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

Listing 14.34: Example of defining an LSTM forecast model.

Like the CNN, the LSTM can support multiple variables or features at each time step. As
the car sales dataset only has one value at each time step, we can fix this at 1, both when
defining the input to the network in the input shape argument [n input, 1], and in defining
the shape of the input samples.

# reshape input samples

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1))

Listing 14.35: Example of reshaping input data for the LSTM model.

Unlike the MLP and CNN that do not read the sequence data one-step at a time, the
LSTM does perform better if the data is stationary. This means that difference operations are
performed to remove the trend and seasonal structure. In the case of the car sales dataset, we
can make the data stationery by performing a seasonal adjustment, that is subtracting the value
from one year ago from each observation.

# seasonal differencing

adjusted = value - value[-12]

Listing 14.36: Example of seasonal differencing.

This can be performed systematically for the entire training dataset. It also means that the
first year of observations must be discarded as we have no prior year of data to difference them
with. The difference() function below will difference a provided dataset with a provided
offset, called the difference order, e.g. 12 for one year of months prior.

# difference dataset

def difference(data, interval):

return [data[i] - data[i - interval] for i in range(interval, len(data))]

Listing 14.37: Example of a function for differencing a series.
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We can make the difference order a hyperparameter to the model and only perform the
operation if a value other than zero is provided. The model fit() function for fitting an LSTM
model is provided below. The model expects a list of five model hyperparameters; they are:

� n input: The number of lag observations to use as input to the model.

� n nodes: The number of LSTM units to use in the hidden layer.

� n epochs: The number of times to expose the model to the whole training dataset.

� n batch: The number of samples within an epoch after which the weights are updated.

� n diff: The difference order or 0 if not used.

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1))

# define model

model = Sequential()

model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, 1)))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 14.38: Example of a function for fitting an LSTM forecast model.

Making a prediction with the LSTM model is the same as making a prediction with a CNN
model. A single input must have the three-dimensional structure of samples, time steps, and
features, which in this case we only have 1 sample and 1 feature: [1, n input, 1]. If the
difference operation was performed, we must add back the value that was subtracted after the
model has made a forecast. We must also difference the historical data prior to formulating the
single input used to make a prediction. The model predict() function below implements this
behavior.

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, n_diff = config

# prepare data

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

history = difference(history, n_diff)

x_input = array(history[-n_input:]).reshape((1, n_input, 1))
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# forecast

yhat = model.predict(x_input, verbose=0)

return correction + yhat[0]

Listing 14.39: Example of a function for making a forecast with a fit LSTM model.

Model hyperparameters were chosen with a little trial and error and are listed below. The
model may not be optimal for the problem and improvements could be made via grid searching.
For details on how, see Chapter 15.

� n input: 36 (i.e. 3 years or 3 × 12)

� n nodes: 50

� n epochs: 100

� n batch: 100 (i.e. batch gradient descent)

� n diff: 12 (i.e. seasonal difference)

This can be specified as a list:

# define config

config = [36, 50, 100, 100, 12]

Listing 14.40: Example of good configuration for an LSTM forecast model.

Tying all of this together, the complete example is listed below.

# evaluate lstm for monthly car sales dataset

from math import sqrt

from numpy import array

from numpy import mean

from numpy import std

from pandas import DataFrame

from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):
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cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# difference dataset

def difference(data, interval):

return [data[i] - data[i - interval] for i in range(interval, len(data))]

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1))

# define model

model = Sequential()

model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, 1)))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, n_diff = config

# prepare data

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

history = difference(history, n_diff)

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return correction + yhat[0]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)
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# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# repeat evaluation of a config

def repeat_evaluate(data, config, n_test, n_repeats=30):

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

return scores

# summarize model performance

def summarize_scores(name, scores):

# print a summary

scores_m, score_std = mean(scores), std(scores)

print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std))

# box and whisker plot

pyplot.boxplot(scores)

pyplot.show()

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# define config

config = [36, 50, 100, 100, 12]

# grid search

scores = repeat_evaluate(data, config, n_test)

# summarize scores

summarize_scores('lstm', scores)

Listing 14.41: Example of an LSTM model for forecasting monthly car sales.

Running the example, we can see the RMSE for each repeated evaluation of the model. At
the end of the run, we can see that the average RMSE is about 2,109, which is worse than the
naive model. This suggests that the chosen model is not skillful, and it was the best that could
be found given the same resources used to find model configurations in the previous sections.
This provides further evidence (although weak evidence) that LSTMs, at least alone, are perhaps
a bad fit for autoregressive-type sequence prediction problems.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...
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> 2266.130

> 2105.043

> 2128.549

> 1952.002

> 2188.287

lstm: 2109.779 RMSE (+/- 81.373)

Listing 14.42: Example output from an LSTM model for forecasting monthly car sales.

A box and whisker plot is also created summarizing the distribution of RMSE scores. Even
the base case for the model did not achieve the performance of a naive model.

Figure 14.3: Box and Whisker Plot of Long Short-Term Memory Neural Network RMSE
Forecasting Car Sales.

14.6.2 CNN LSTM

We have seen that the CNN model is capable of automatically learning and extracting features
from the raw sequence data without scaling or differencing. We can combine this capability
with the LSTM where a CNN model is applied to sub-sequences of input data, the results of
which together form a time series of extracted features that can be interpreted by an LSTM
model. This combination of a CNN model used to read multiple subsequences over time by an
LSTM is called a CNN-LSTM model. The model requires that each input sequence, e.g. 36
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months, is divided into multiple subsequences, each read by the CNN model, e.g. 3 subsequence
of 12 time steps. It may make sense to divide the sub-sequences by years, but this is just a
hypothesis, and other splits could be used, such as six subsequences of six time steps. Therefore,
this splitting is parameterized with the n seq and n steps for the number of subsequences and
number of steps per subsequence parameters.

# reshape input samples

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1))

Listing 14.43: Example of reshaping input data for the CNN-LSTM model.

The number of lag observations per sample is simply (n seq × n steps). This is a 4-
dimensional input array now with the dimensions: [samples, subsequences, timesteps,

features]. The same CNN model must be applied to each input subsequence. We can achieve
this by wrapping the entire CNN model in a TimeDistributed layer wrapper.

# define CNN input model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=n_filters, kernel_size=n_kernel,

activation='relu', input_shape=(None,n_steps,1))))

model.add(TimeDistributed(Conv1D(filters=n_filters, kernel_size=n_kernel,

activation='relu')))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

Listing 14.44: Example of defining the CNN input model.

The output of one application of the CNN submodel will be a vector. The output of
the submodel to each input subsequence will be a time series of interpretations that can be
interpreted by an LSTM model. This can be followed by a fully connected layer to interpret the
outcomes of the LSTM and finally an output layer for making one-step predictions.

# define LSTM and output model

model.add(LSTM(n_nodes, activation='relu'))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

Listing 14.45: Example of defining the LSTM output model.

The complete model fit() function is listed below. The model expects a list of seven
hyperparameters; they are:

� n seq: The number of subsequences within a sample.

� n steps: The number of time steps within each subsequence.

� n filters: The number of parallel filters.

� n kernel: The number of time steps considered in each read of the input sequence.

� n nodes: The number of LSTM units to use in the hidden layer.

� n epochs: The number of times to expose the model to the whole training dataset.

� n batch: The number of samples within an epoch after which the weights are updated.



14.6. Recurrent Neural Network Models 277

# fit a model

def model_fit(train, config):

# unpack config

n_seq, n_steps, n_filters, n_kernel, n_nodes, n_epochs, n_batch = config

n_input = n_seq * n_steps

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], n_seq, n_steps, 1))

# define model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=n_filters, kernel_size=n_kernel,

activation='relu', input_shape=(None,n_steps,1))))

model.add(TimeDistributed(Conv1D(filters=n_filters, kernel_size=n_kernel,

activation='relu')))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(n_nodes, activation='relu'))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 14.46: Example of a function for defining and fitting a CNN-LSTM model.

Making a prediction with the fit model is much the same as the LSTM or CNN, although
with the addition of splitting each sample into subsequences with a given number of time steps.

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_seq, n_steps, 1))

Listing 14.47: Example of reshaping data for making a prediction.

The updated model predict() function is listed below.

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_seq, n_steps, _, _, _, _, _ = config

n_input = n_seq * n_steps

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_seq, n_steps, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]

Listing 14.48: Example of defining a function for making a forecast with a fit CNN-LSTM
model.

Model hyperparameters were chosen with a little trial and error and are listed below. The
model may not be optimal for the problem and improvements could be made via grid searching.
For details on how, see Chapter 15.

� n seq: 3 (i.e. 3 years)
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� n steps: 12 (i.e. 1 year of months)

� n filters: 64

� n kernel: 3

� n nodes: 100

� n epochs: 200

� n batch: 100 (i.e. batch gradient descent)

We can define the configuration as a list; for example:

# define config

config = [3, 12, 64, 3, 100, 200, 100]

Listing 14.49: Example of defining a good configuration for the CNN-LSTM model.

The complete example of evaluating the CNN-LSTM model for forecasting the univariate
monthly car sales is listed below.

# evaluate cnn-lstm for monthly car sales dataset

from math import sqrt

from numpy import array

from numpy import mean

from numpy import std

from pandas import DataFrame

from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import TimeDistributed

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from matplotlib import pyplot

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values
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agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# fit a model

def model_fit(train, config):

# unpack config

n_seq, n_steps, n_filters, n_kernel, n_nodes, n_epochs, n_batch = config

n_input = n_seq * n_steps

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], n_seq, n_steps, 1))

# define model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=n_filters, kernel_size=n_kernel,

activation='relu', input_shape=(None,n_steps,1))))

model.add(TimeDistributed(Conv1D(filters=n_filters, kernel_size=n_kernel,

activation='relu')))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(n_nodes, activation='relu'))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_seq, n_steps, _, _, _, _, _ = config

n_input = n_seq * n_steps

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_seq, n_steps, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)
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# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# repeat evaluation of a config

def repeat_evaluate(data, config, n_test, n_repeats=30):

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

return scores

# summarize model performance

def summarize_scores(name, scores):

# print a summary

scores_m, score_std = mean(scores), std(scores)

print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std))

# box and whisker plot

pyplot.boxplot(scores)

pyplot.show()

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# define config

config = [3, 12, 64, 3, 100, 200, 100]

# grid search

scores = repeat_evaluate(data, config, n_test)

# summarize scores

summarize_scores('cnn-lstm', scores)

Listing 14.50: Example of a CNN-LSTM model for forecasting monthly car sales.

Running the example prints the RMSE for each repeated evaluation of the model. The final
averaged RMSE is reported at the end of about 1,626, which is lower than the naive model,
but still higher than a SARIMA model. The standard deviation of this score is also very large,
suggesting that the chosen configuration may not be as stable as the standalone CNN model.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> 1289.794

> 1685.976

> 1498.123

> 1618.627

> 1448.361

cnn-lstm: 1626.735 RMSE (+/- 279.850)

Listing 14.51: Example output from a CNN-LSTM model for forecasting monthly car sales.
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A box and whisker plot is also created summarizing the distribution of RMSE scores. The
plot shows one single outlier of very poor performance just below 3,000 sales.

Figure 14.4: Box and Whisker Plot of CNN-LSTM RMSE Forecasting Car Sales.

14.6.3 ConvLSTM

It is possible to perform a convolutional operation as part of the read of the input sequence
within each LSTM unit. This means, rather than reading a sequence one step at a time, the
LSTM would read a block or subsequence of observations at a time using a convolutional
process, like a CNN. This is different to first reading an extracting features with an LSTM and
interpreting the result with an LSTM; this is performing the CNN operation at each time step
as part of the LSTM.

This type of model is called a Convolutional LSTM, or ConvLSTM for short. It is provided
in Keras as a layer called ConvLSTM2D for 2D data. We can configure it for use with 1D sequence
data by assuming that we have one row with multiple columns. As with the CNN-LSTM, the
input data is split into subsequences where each subsequence has a fixed number of time steps,
although we must also specify the number of rows in each subsequence, which in this case is
fixed at 1.

# reshape input samples

train_x = train_x.reshape((train_x.shape[0], n_seq, 1, n_steps, 1))
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Listing 14.52: Example of reshaping input data for the ConvLSTM model.

The shape is five-dimensional, with the dimensions: [samples, subsequences, rows,

columns, features].
Like the CNN, the ConvLSTM layer allows us to specify the number of filter maps and the

size of the kernel used when reading the input sequences.

# define convlstm layer

model.add(ConvLSTM2D(filters=n_filters, kernel_size=(1,n_kernel), activation='relu',

input_shape=(n_seq, 1, n_steps, 1)))

Listing 14.53: Example of defining a ConvLSTM layer for univariate data.

The output of the layer is a sequence of filter maps that must first be flattened before
it can be interpreted and followed by an output layer. The model expects a list of seven
hyperparameters, the same as the CNN-LSTM; they are:

� n seq: The number of subsequences within a sample.

� n steps: The number of time steps within each subsequence.

� n filters: The number of parallel filters.

� n kernel: The number of time steps considered in each read of the input sequence.

� n nodes: The number of LSTM units to use in the hidden layer.

� n epochs: The number of times to expose the model to the whole training dataset.

� n batch: The number of samples within an epoch after which the weights are updated.

The model fit() function that implements all of this is listed below.

# fit a model

def model_fit(train, config):

# unpack config

n_seq, n_steps, n_filters, n_kernel, n_nodes, n_epochs, n_batch = config

n_input = n_seq * n_steps

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], n_seq, 1, n_steps, 1))

# define model

model = Sequential()

model.add(ConvLSTM2D(filters=n_filters, kernel_size=(1,n_kernel), activation='relu',

input_shape=(n_seq, 1, n_steps, 1)))

model.add(Flatten())

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 14.54: Example of a function for defining and fitting a ConvLSTM forecast model.
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A prediction is made with the fit model in the same way as the CNN-LSTM, although with
the additional rows dimension that we fix to 1.

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_seq, 1, n_steps, 1))

Listing 14.55: Example of reshaping input data for making a forecast with a ConvLSTM model.

The model predict() function for making a single one-step prediction is listed below.

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_seq, n_steps, _, _, _, _, _ = config

n_input = n_seq * n_steps

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_seq, 1, n_steps, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]

Listing 14.56: Example of a function for making a forecast with a fit ConvLSTM model.

Model hyperparameters were chosen with a little trial and error and are listed below. The
model may not be optimal for the problem and improvements could be made via grid searching.
For details on how, see Chapter 15.

� n seq: 3 (i.e. 3 years)

� n steps: 12 (i.e. 1 year of months)

� n filters: 256

� n kernel: 3

� n nodes: 200

� n epochs: 200

� n batch: 100 (i.e. batch gradient descent)

We can define the configuration as a list; for example:

# define config

config = [3, 12, 256, 3, 200, 200, 100]

Listing 14.57: Example of defining a good configuration for the ConvLSTM model.

We can tie all of this together. The complete code listing for the ConvLSTM model evaluated
for one-step forecasting of the monthly car sales dataset is listed below.

# evaluate convlstm for monthly car sales dataset

from math import sqrt

from numpy import array

from numpy import mean

from numpy import std

from pandas import DataFrame
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from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import ConvLSTM2D

from matplotlib import pyplot

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# difference dataset

def difference(data, interval):

return [data[i] - data[i - interval] for i in range(interval, len(data))]

# fit a model

def model_fit(train, config):

# unpack config

n_seq, n_steps, n_filters, n_kernel, n_nodes, n_epochs, n_batch = config

n_input = n_seq * n_steps

# prepare data

data = series_to_supervised(train, n_input)

train_x, train_y = data[:, :-1], data[:, -1]

train_x = train_x.reshape((train_x.shape[0], n_seq, 1, n_steps, 1))

# define model

model = Sequential()

model.add(ConvLSTM2D(filters=n_filters, kernel_size=(1,n_kernel), activation='relu',

input_shape=(n_seq, 1, n_steps, 1)))

model.add(Flatten())

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
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return model

# forecast with a pre-fit model

def model_predict(model, history, config):

# unpack config

n_seq, n_steps, _, _, _, _, _ = config

n_input = n_seq * n_steps

# prepare data

x_input = array(history[-n_input:]).reshape((1, n_seq, 1, n_steps, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return yhat[0]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# repeat evaluation of a config

def repeat_evaluate(data, config, n_test, n_repeats=30):

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

return scores

# summarize model performance

def summarize_scores(name, scores):

# print a summary

scores_m, score_std = mean(scores), std(scores)

print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std))

# box and whisker plot

pyplot.boxplot(scores)

pyplot.show()

series = read_csv('monthly-car-sales.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# define config

config = [3, 12, 256, 3, 200, 200, 100]



14.6. Recurrent Neural Network Models 286

# grid search

scores = repeat_evaluate(data, config, n_test)

# summarize scores

summarize_scores('convlstm', scores)

Listing 14.58: Example of a ConvLSTM model for forecasting monthly car sales.

Running the example prints the RMSE for each repeated evaluation of the model. The final
averaged RMSE is reported at the end of about 1,660, which is lower than the naive model, but
still higher than a SARIMA model. It is a result that is perhaps on par with the CNN-LSTM
model. The standard deviation of this score is also very large, suggesting that the chosen
configuration may not be as stable as the standalone CNN model.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

> 1653.084

> 1650.430

> 1291.353

> 1558.616

> 1653.231

convlstm: 1660.840 RMSE (+/- 248.826)

Listing 14.59: Example output from a ConvLSTM model for forecasting monthly car sales.

A box and whisker plot is also created, summarizing the distribution of RMSE scores.
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Figure 14.5: Box and Whisker Plot of ConvLSTM RMSE Forecasting Car Sales.

14.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Data Preparation. Explore whether data preparation, such as normalization, standard-
ization, and/or differencing can list the performance of any of the models.

� Grid Search Hyperparameters. Implement a grid search of the hyperparameters for
one model to see if you can further lift performance.

� Learning Curve Diagnostics. Create a single fit of one model and review the learning
curves on train and validation splits of the dataset, then use the diagnostics of the learning
curves to further tune the model hyperparameters in order to improve model performance.

� History Size. Explore different amounts of historical data (lag inputs) for one model to
see if you can further improve model performance

� Reduce Variance of Final Model. Explore one or more strategies to reduce the
variance for one of the neural network models.



14.8. Further Reading 288

� Update During Walk-Forward. Explore whether re-fitting or updating a neural
network model as part of walk-forward validation can further improve model performance.

� More Parameterization. Explore adding further model parameterization for one model,
such as the use of additional layers.

If you explore any of these extensions, I’d love to know.

14.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� pandas.DataFrame.shift API.
http://pandas-docs.github.io/pandas-docs-travis/generated/pandas.DataFrame.

shift.html

� matplotlib.pyplot.boxplot API.
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Pooling Layers API.
https://keras.io/layers/pooling/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

14.9 Summary

In this tutorial, you discovered how to develop a suite of deep learning models for univariate
time series forecasting. Specifically, you learned:

� How to develop a robust test harness using walk-forward validation for evaluating the
performance of neural network models.

� How to develop and evaluate simple Multilayer Perceptron and convolutional neural
networks for time series forecasting.

� How to develop and evaluate LSTMs, CNN-LSTMs, and ConvLSTM neural network
models for time series forecasting.

http://pandas-docs.github.io/pandas-docs-travis/generated/pandas.DataFrame.shift.html
http://pandas-docs.github.io/pandas-docs-travis/generated/pandas.DataFrame.shift.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html
https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/
https://keras.io/layers/recurrent/
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14.9.1 Next

In the next lesson, you will discover how to develop a framework to grid search deep learning
models for univariate time series forecasting problems.



Chapter 15

How to Grid Search Deep Learning
Models for Univariate Forecasting

Grid searching is generally not an operation that we can perform with deep learning methods.
This is because deep learning methods often require large amounts of data and large models,
together resulting in models that take hours, days, or weeks to train. In those cases where the
datasets are smaller, such as univariate time series, it may be possible to use a grid search to
tune the hyperparameters of a deep learning model. In this tutorial, you will discover how to
develop a framework to grid search hyperparameters for deep learning models. After completing
this tutorial, you will know:

� How to develop a generic grid searching framework for tuning model hyperparameters.

� How to grid search hyperparameters for a Multilayer Perceptron model on the airline
passengers univariate time series forecasting problem.

� How to adapt the framework to grid search hyperparameters for convolutional and long
short-term memory neural networks.

Let’s get started.

15.1 Tutorial Overview

This tutorial is divided into five parts; they are:

1. Time Series Problem

2. Grid Search Framework

3. Multilayer Perceptron Model

4. Convolutional Neural Network Model

5. Long Short-Term Memory Network Model

290
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15.2 Time Series Problem

In this tutorial we will focus on one dataset and use it as the context to demonstrate the
development of a grid searching framework for range of deep learning models for univariate
time series forecasting. We will use the monthly airline passenger dataset as this context as it
includes the complexity of both trend and seasonal elements. The monthly airline passenger
dataset summarizes the monthly total number of international passengers in thousands on for
an airline from 1949 to 1960. Download the dataset directly from here:

� monthly-airline-passengers.csv 1

Save the file with the filename monthly-airline-passengers.csv in your current working
directory. We can load this dataset as a Pandas DataFrame using the function read csv().

# load

series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)

Listing 15.1: Load the dataset.

Once loaded, we can summarize the shape of the dataset in order to determine the number
of observations.

# summarize shape

print(series.shape)

Listing 15.2: Summarize the shape of the dataset.

We can then create a line plot of the series to get an idea of the structure of the series.

# plot

pyplot.plot(series)

pyplot.show()

Listing 15.3: Create a line plot of the dataset.

We can tie all of this together; the complete example is listed below.

# load and plot monthly airline passengers dataset

from pandas import read_csv

from matplotlib import pyplot

# load

series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)

# summarize shape

print(series.shape)

# plot

pyplot.plot(series)

pyplot.xticks([])

pyplot.show()

Listing 15.4: Example of loading and plotting the monthly airline passengers dataset.

Running the example first prints the shape of the dataset.

(144, 1)

Listing 15.5: Example output from loading and plotting the monthly airline passengers dataset.

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv
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The dataset is monthly and has 12 years, or 144 observations. In our testing, we will use the
last year, or 12 observations, as the test set. A line plot is created. The dataset has an obvious
trend and seasonal component. The period of the seasonal component is 12 months.

Figure 15.1: Line Plot of Monthly International Airline Passengers.

In this tutorial, we will introduce the tools for grid searching, but we will not optimize the
model hyperparameters for this problem. Instead, we will demonstrate how to grid search the
deep learning model hyperparameters generally and find models with some skill compared to a
naive model. From prior experiments, a naive model can achieve a root mean squared error,
or RMSE, of 50.70 (remember the units are thousands of passengers) by persisting the value
from 12 months ago (relative index -12). The performance of this naive model provides a bound
on a model that is considered skillful for this problem. Any model that achieves a predictive
performance of lower than 50.70 on the last 12 months has skill.

It should be noted that a tuned ETS model can achieve an RMSE of 17.09 and a tuned
SARIMA can achieve an RMSE of 13.89. These provide a lower bound on the expectations of a
well-tuned deep learning model for this problem. Now that we have defined our problem and
expectations of model skill, we can look at defining the grid search test harness.
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15.3 Develop a Grid Search Framework

In this section, we will develop a grid search test harness that can be used to evaluate a range of
hyperparameters for different neural network models, such as MLPs, CNNs, and LSTMs. This
section is divided into the following parts:

1. Train-Test Split

2. Series as Supervised Learning

3. Walk-Forward Validation

4. Repeat Evaluation

5. Summarize Performance

6. Worked Example

Note, much of this framework was presented already in Chapter 14. Some elements are
duplicated here given the changes needed to adapt it for grid searching model hyperparameters.

15.3.1 Train-Test Split

The first step is to split the loaded series into train and test sets. We will use the first 11
years (132 observations) for training and the last 12 for the test set. The train test split()

function below will split the series taking the raw observations and the number of observations
to use in the test set as arguments.

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

Listing 15.6: Example of a function to split the dataset into train and test sets.

15.3.2 Series as Supervised Learning

Next, we need to be able to frame the univariate series of observations as a supervised learning
problem so that we can train neural network models. A supervised learning framing of a series
means that the data needs to be split into multiple examples that the model learns from and
generalizes across. Each sample must have both an input component and an output component.
The input component will be some number of prior observations, such as three years, or 36 time
steps.

The output component will be the total sales in the next month because we are interested
in developing a model to make one-step forecasts. We can implement this using the shift()

function on the Pandas DataFrame. It allows us to shift a column down (forward in time) or
back (backward in time). We can take the series as a column of data, then create multiple copies
of the column, shifted forward or backward in time in order to create the samples with the
input and output elements we require. When a series is shifted down, NaN values are introduced
because we don’t have values beyond the start of the series.
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(t)

1

2

3

4

Listing 15.7: Example of a time series as a column.

This column can be shifted and inserted as a column beforehand:

(t-1), (t)

Nan, 1

1, 2

2, 3

3, 4

4, NaN

Listing 15.8: Example of an added columns with the shifted time series.

We can see that on the second row, the value 1 is provided as input as an observation at the
prior time step, and 2 is the next value in the series that can be predicted, or learned by the
model to be predicted when 1 is presented as input. Rows with NaN values can be removed. The
series to supervised() function below implements this behavior, allowing you to specify the
number of lag observations to use in the input and the number to use in the output for each
sample. It will also remove rows that have NaN values as they cannot be used to train or test a
model.

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

Listing 15.9: Example of a function to transform a time series into samples.

Note, this is a more generic way of transforming a time series dataset into samples than the
specialized methods presented in Chapters 7, 8, and 9.

15.3.3 Walk-Forward Validation

Time series forecasting models can be evaluated on a test set using walk-forward validation.
Walk-forward validation is an approach where the model makes a forecast for each observation
in the test dataset one at a time. After each forecast is made for a time step in the test
dataset, the true observation for the forecast is added to the test dataset and made available to
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the model. Simpler models can be refit with the observation prior to making the subsequent
prediction. More complex models, such as neural networks, are not refit given the much greater
computational cost. Nevertheless, the true observation for the time step can then be used as
part of the input for making the prediction on the next time step.

First, the dataset is split into train and test sets. We will call the train test split()

function to perform this split and pass in the pre-specified number of observations to use as the
test data. A model will be fit once on the training dataset for a given configuration. We will
define a generic model fit() function to perform this operation that can be filled in for the
given type of neural network that we may be interested in later. The function takes the training
dataset and the model configuration and returns the fit model ready for making predictions.

# fit a model

def model_fit(train, config):

return None

Listing 15.10: Example of a dummy function for fitting a model.

Each time step of the test dataset is enumerated. A prediction is made using the fit model.
Again, we will define a generic function named model predict() that takes the fit model, the
history, and the model configuration and makes a single one-step prediction.

# forecast with a pre-fit model

def model_predict(model, history, config):

return 0.0

Listing 15.11: Example of a dummy function for making a prediction with a fit model.

The prediction is added to a list of predictions and the true observation from the test set is
added to a list of observations that was seeded with all observations from the training dataset.
This list is built up during each step in the walk-forward validation, allowing the model to make
a one-step prediction using the most recent history. All of the predictions can then be compared
to the true values in the test set and an error measure calculated. We will calculate the root
mean squared error, or RMSE, between predictions and the true values.

RMSE is calculated as the square root of the average of the squared differences between
the forecasts and the actual values. The measure rmse() implements this below using the
mean squared error() scikit-learn function to first calculate the mean squared error, or MSE,
before calculating the square root.

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

Listing 15.12: Example of a function for calculating the error for a forecast.

The complete walk forward validation() function that ties all of this together is listed
below. It takes the dataset, the number of observations to use as the test set, and the
configuration for the model, and returns the RMSE for the model performance on the test set.

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model
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model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

Listing 15.13: Example of a function for the walk-forward evaluation of a deep learning model.

15.3.4 Repeat Evaluation

Neural network models are stochastic. This means that, given the same model configuration and
the same training dataset, a different internal set of weights will result each time the model is
trained that will, in turn, have a different performance. This is a benefit, allowing the model to
be adaptive and find high performing configurations to complex problems. It is also a problem
when evaluating the performance of a model and in choosing a final model to use to make
predictions.

To address model evaluation, we will evaluate a model configuration multiple times via
walk-forward validation and report the error as the average error across each evaluation. This is
not always possible for large neural networks and may only make sense for small networks that
can be fit in minutes or hours. The repeat evaluate() function below implements this and
allows the number of repeats to be specified as an optional parameter that defaults to 10 and
returns the mean RMSE score from all repeats.

# score a model, return None on failure

def repeat_evaluate(data, config, n_test, n_repeats=10):

# convert config to a key

key = str(config)

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

# summarize score

result = mean(scores)

print('> Model[%s] %.3f' % (key, result))

return (key, result)

Listing 15.14: Example of a function for the repeated evaluation of a model.

15.3.5 Grid Search

We now have all the pieces of the framework. All that is left is a function to drive the search. We
can define a grid search() function that takes the dataset, a list of configurations to search,
and the number of observations to use as the test set and perform the search. Once mean scores
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are calculated for each config, the list of configurations is sorted in ascending order so that the
best scores are listed first. The complete function is listed below.

# grid search configs

def grid_search(data, cfg_list, n_test):

# evaluate configs

scores = scores = [score_model(data, n_test, cfg) for cfg in cfg_list]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

Listing 15.15: Example of a function for coordinating the grid search of model hyperparameters.

15.3.6 Worked Example

Now that we have defined the elements of the test harness, we can tie them all together and
define a simple persistence model. We do not need to fit a model so the model fit() function
will be implemented to simply return None.

# fit a model

def model_fit(train, config):

return None

Listing 15.16: Example of a dummy function for fitting a model.

We will use the config to define a list of index offsets in the prior observations relative to
the time to be forecasted that will be used as the prediction. For example, 12 will use the
observation 12 months ago (-12) relative to the time to be forecasted.

# define config

cfg_list = [1, 6, 12, 24, 36]

Listing 15.17: Example of a set of configurations to search.

The model predict() function can be implemented to use this configuration to persist the
value at the negative relative offset.

# forecast with a pre-fit model

def model_predict(model, history, offset):

history[-offset]

Listing 15.18: Example of a function for making persistence forecasts.

The complete example of using the framework with a simple persistence model is listed
below.

# grid search persistence models for monthly airline passengers dataset

from math import sqrt

from numpy import mean

from pandas import read_csv

from sklearn.metrics import mean_squared_error

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]
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# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# fit a model

def model_fit(train, config):

return None

# forecast with a pre-fit model

def model_predict(model, history, offset):

return history[-offset]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# score a model, return None on failure

def repeat_evaluate(data, config, n_test, n_repeats=10):

# convert config to a key

key = str(config)

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

# summarize score

result = mean(scores)

print('> Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test):

# evaluate configs

scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# define dataset

series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)

data = series.values
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# data split

n_test = 12

# model configs

cfg_list = [1, 6, 12, 24, 36]

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 10 configs

for cfg, error in scores[:10]:

print(cfg, error)

Listing 15.19: Example of demonstrating the grid search framework for evaluating a persistence
model on the airline passengers dataset.

Running the example prints the RMSE of the model evaluated using walk-forward validation
on the final 12 months of data. Each model configuration is evaluated 10 times, although,
because the model has no stochastic element, the score is the same each time. At the end of
the run, the configurations and RMSE for the top three performing model configurations are
reported. We can see, as we might have expected, that persisting the value from one year ago
(relative offset -12) resulted in the best performance for the persistence model.

...

> 110.274

> 110.274

> 110.274

> Model[36] 110.274

done

12 50.708316214732804

1 53.1515129919491

24 97.10990337413241

36 110.27352356753639

6 126.73495965991387

Listing 15.20: Example output from demonstrating the grid search framework for evaluating a
persistence model on the airline passengers dataset.

Now that we have a robust test harness for grid searching model hyperparameters, we can
use it to evaluate a suite of neural network models.

15.4 Multilayer Perceptron Model

In this section we will grid search hyperparameters for an MLPs for univariate time series
forecasting. For more details on modeling a univariate time series with an MLP, see Chapter 7.
There are many aspects of the MLP that we may wish to tune. We will define a very simple
model with one hidden layer and define five hyperparameters to tune. They are:

� n input: The number of prior inputs to use as input for the model (e.g. 12 months).

� n nodes: The number of nodes to use in the hidden layer (e.g. 50).

� n epochs: The number of training epochs (e.g. 1000).
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� n batch: The number of samples to include in each mini-batch (e.g. 32).

� n diff: The difference order (e.g. 0 or 12).

Modern neural networks can handle raw data with little pre-processing, such as scaling and
differencing. Nevertheless, when it comes to time series data, sometimes differencing the series
can make a problem easier to model. Recall that differencing is the transform of the data such
that a value of a prior observation is subtracted from the current observation, removing trend
or seasonality structure. We will add support for differencing to the grid search test harness,
just in case it adds value to your specific problem. It does add value for the internal airline
passengers dataset. The difference() function below will calculate the difference of a given
order for the dataset.

# difference dataset

def difference(data, order):

return [data[i] - data[i - order] for i in range(order, len(data))]

Listing 15.21: Example of a function for differencing a dataset.

Differencing will be optional, where an order of 0 suggests no differencing, whereas an order
1 or order 12 will require that the data be differenced prior to fitting the model and that the
predictions of the model will need the differencing reversed prior to returning the forecast. We
can now define the elements required to fit the MLP model in the test harness. First, we must
unpack the list of hyperparameters.

# unpack config

n_input, n_nodes, n_epochs, n_batch, n_diff = config

Listing 15.22: Example of unpacking MLP hyperparameters.

Next, we must prepare the data, including the differencing, transforming the data to a
supervised format and separating out the input and output aspects of the data samples.

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

# transform series into supervised format

data = series_to_supervised(train, n_input)

# separate inputs and outputs

train_x, train_y = data[:, :-1], data[:, -1]

Listing 15.23: Example of preparing data for fitting the MLP model.

We can now define and fit the model with the provided configuration.

# define model

model = Sequential()

model.add(Dense(n_nodes, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit model

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

Listing 15.24: Example of defining an MLP model.

The complete implementation of the model fit() function is listed below.
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# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

# transform series into supervised format

data = series_to_supervised(train, n_input)

# separate inputs and outputs

train_x, train_y = data[:, :-1], data[:, -1]

# define model

model = Sequential()

model.add(Dense(n_nodes, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit model

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 15.25: Example of a function for fitting an MLP model for a given configuration.

The five chosen hyperparameters are by no means the only or best hyperparameters of the
model to tune. You may modify the function to tune other parameters, such as the addition
and size of more hidden layers and much more. Once the model is fit, we can use it to make
forecasts. If the data was differenced, the difference must be inverted for the prediction of the
model. This involves adding the value at the relative offset from the history back to the value
predicted by the model.

# invert difference

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

...

# correct forecast if it was differenced

return correction + yhat[0]

Listing 15.26: Example of inverting any differencing performed.

It also means that the history must be differenced so that the input data used to make the
prediction has the expected form.

# calculate difference

history = difference(history, n_diff)

Listing 15.27: Example of differencing the history prior to making a prediction.

Once prepared, we can use the history data to create a single sample as input to the model for
making a one-step prediction. The shape of one sample must be [1, n input] where n input

is the chosen number of lag observations to use.

# shape input for model

x_input = array(history[-n_input:]).reshape((1, n_input))

Listing 15.28: Example of preparing one sample ready for making a forecast.

Finally, a prediction can be made.
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# make forecast

yhat = model.predict(x_input, verbose=0)

Listing 15.29: Example of making a forecast with a single sample of data.

The complete implementation of the model predict() function is listed below. Next, we
must define the range of values to try for each hyperparameter. We can define a model configs()

function that creates a list of the different combinations of parameters to try. We will define
a small subset of configurations to try as an example, including a differencing of 12 months,
which we expect will be required. You are encouraged to experiment with standalone models,
review learning curve diagnostic plots, and use information about the domain to set ranges of
values of the hyperparameters to grid search.

You are also encouraged to repeat the grid search to narrow in on ranges of values that
appear to show better performance. An implementation of the model configs() function is
listed below.

# create a list of configs to try

def model_configs():

# define scope of configs

n_input = [12]

n_nodes = [50, 100]

n_epochs = [100]

n_batch = [1, 150]

n_diff = [0, 12]

# create configs

configs = list()

for i in n_input:

for j in n_nodes:

for k in n_epochs:

for l in n_batch:

for m in n_diff:

cfg = [i, j, k, l, m]

configs.append(cfg)

print('Total configs: %d' % len(configs))

return configs

Listing 15.30: Example of a function for preparing a list of model configurations to evaluate.

We now have all of the pieces needed to grid search MLP models for a univariate time series
forecasting problem. The complete example is listed below.

# grid search mlps for monthly airline passengers dataset

from math import sqrt

from numpy import array

from numpy import mean

from pandas import DataFrame

from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]
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# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# difference dataset

def difference(data, order):

return [data[i] - data[i - order] for i in range(order, len(data))]

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

# transform series into supervised format

data = series_to_supervised(train, n_in=n_input)

# separate inputs and outputs

train_x, train_y = data[:, :-1], data[:, -1]

# define model

model = Sequential()

model.add(Dense(n_nodes, activation='relu', input_dim=n_input))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit model

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

# forecast with the fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, n_diff = config

# prepare data

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

history = difference(history, n_diff)

# shape input for model

x_input = array(history[-n_input:]).reshape((1, n_input))
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# make forecast

yhat = model.predict(x_input, verbose=0)

# correct forecast if it was differenced

return correction + yhat[0]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# score a model, return None on failure

def repeat_evaluate(data, config, n_test, n_repeats=10):

# convert config to a key

key = str(config)

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

# summarize score

result = mean(scores)

print('> Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test):

# evaluate configs

scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a list of configs to try

def model_configs():

# define scope of configs

n_input = [12]

n_nodes = [50, 100]

n_epochs = [100]

n_batch = [1, 150]

n_diff = [0, 12]

# create configs

configs = list()
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for i in n_input:

for j in n_nodes:

for k in n_epochs:

for l in n_batch:

for m in n_diff:

cfg = [i, j, k, l, m]

configs.append(cfg)

print('Total configs: %d' % len(configs))

return configs

# define dataset

series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

cfg_list = model_configs()

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 3 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 15.31: Example of demonstrating the grid search framework for evaluating a MLP model
configurations on the airline passengers dataset.

Running the example, we can see that there are a total of eight configurations to be evaluated
by the framework. Each config will be evaluated 10 times; that means 10 models will be created
and evaluated using walk-forward validation to calculate an RMSE score before an average of
those 10 scores is reported and used to score the configuration. The scores are then sorted
and the top 3 configurations with the lowest RMSE are reported at the end. A skillful model
configuration was found as compared to a naive model that reported an RMSE of 50.70. We
can see that the best RMSE of 18.98 was achieved with a configuration of [12, 100, 100, 1,

12], which we know can be interpreted as:

� n input: 12

� n nodes: 100

� n epochs: 100

� n batch: 1

� n diff: 12

A truncated example output of the grid search is listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.
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Total configs: 8

> 20.707

> 29.111

> 17.499

> 18.918

> 28.817

...

> 21.015

> 20.208

> 18.503

> Model[[12, 100, 100, 150, 12]] 19.674

done

[12, 100, 100, 1, 12] 18.982720013625606

[12, 50, 100, 150, 12] 19.33004059448595

[12, 100, 100, 1, 0] 19.5389405532858

Listing 15.32: Example output from demonstrating the grid search framework for evaluating a
MLP model configurations on the airline passengers dataset.

15.5 Convolutional Neural Network Model

We can now adapt the framework to grid search CNN models. For more details on modeling a
univariate time series with a CNN, see Chapter 8. Much the same set of hyperparameters can
be searched as with the MLP model, except the number of nodes in the hidden layer can be
replaced by the number of filter maps and kernel size in the convolutional layers. The chosen
set of hyperparameters to grid search in the CNN model are as follows:

� n input: The number of prior inputs to use as input for the model (e.g. 12 months).

� n filters: The number of filter maps in the convolutional layer (e.g. 32).

� n kernel: The kernel size in the convolutional layer (e.g. 3).

� n epochs: The number of training epochs (e.g. 1000).

� n batch: The number of samples to include in each mini-batch (e.g. 32).

� n diff: The difference order (e.g. 0 or 12).

Some additional hyperparameters that you may wish to investigate are the use of two
convolutional layers before a pooling layer, the repetition of the convolutional and pooling layer
pattern, the use of dropout, and more. We will define a very simple CNN model with one
convolutional layer and one max pooling layer.

# define model

model = Sequential()

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu',

input_shape=(n_input, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())



15.5. Convolutional Neural Network Model 307

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

Listing 15.33: Example of defining a CNN model.

The data must be prepared in much the same way as for the MLP. Unlike the MLP that
expects the input data to have the shape [samples, features], the 1D CNN model expects the
data to have the shape [samples, timesteps, features] where features maps onto channels
and in this case 1 for the one variable we measure each month.

# reshape input data into [samples, timesteps, features]

n_features = 1

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))

Listing 15.34: Example of reshaping data for the CNN model.

The complete implementation of the model fit() function is listed below.

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_filters, n_kernel, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

# transform series into supervised format

data = series_to_supervised(train, n_input)

# separate inputs and outputs

train_x, train_y = data[:, :-1], data[:, -1]

# reshape input data into [samples, timesteps, features]

n_features = 1

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))

# define model

model = Sequential()

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu',

input_shape=(n_input, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 15.35: Example of a function for fitting a CNN model for a given configuration.

Making a prediction with a fit CNN model is very much like making a prediction with a
fit MLP. Again, the only difference is that the one sample worth of input data must have a
three-dimensional shape.

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

Listing 15.36: Example of reshaping one sample for making a forecast.

The complete implementation of the model predict() function is listed below.

# forecast with the fit model

def model_predict(model, history, config):
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# unpack config

n_input, _, _, _, _, n_diff = config

# prepare data

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

history = difference(history, n_diff)

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return correction + yhat[0]

Listing 15.37: Example of a function for making a forecast with a fit CNN model.

Finally, we can define a list of configurations for the model to evaluate. As before, we can
do this by defining lists of hyperparameter values to try that are combined into a list. We will
try a small number of configurations to ensure the example executes in a reasonable amount of
time. The complete model configs() function is listed below.

# create a list of configs to try

def model_configs():

# define scope of configs

n_input = [12]

n_filters = [64]

n_kernels = [3, 5]

n_epochs = [100]

n_batch = [1, 150]

n_diff = [0, 12]

# create configs

configs = list()

for a in n_input:

for b in n_filters:

for c in n_kernels:

for d in n_epochs:

for e in n_batch:

for f in n_diff:

cfg = [a,b,c,d,e,f]

configs.append(cfg)

print('Total configs: %d' % len(configs))

return configs

Listing 15.38: Example of a function for preparing a list of model configurations to evaluate.

We now have all of the elements needed to grid search the hyperparameters of a convolutional
neural network for univariate time series forecasting. The complete example is listed below.

# grid search cnn for monthly airline passengers dataset

from math import sqrt

from numpy import array

from numpy import mean

from pandas import DataFrame

from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten
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from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)

cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# difference dataset

def difference(data, order):

return [data[i] - data[i - order] for i in range(order, len(data))]

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_filters, n_kernel, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

# transform series into supervised format

data = series_to_supervised(train, n_in=n_input)

# separate inputs and outputs

train_x, train_y = data[:, :-1], data[:, -1]

# reshape input data into [samples, timesteps, features]

n_features = 1

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))

# define model

model = Sequential()

model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu',

input_shape=(n_input, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model
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# forecast with the fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, _, n_diff = config

# prepare data

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

history = difference(history, n_diff)

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return correction + yhat[0]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# score a model, return None on failure

def repeat_evaluate(data, config, n_test, n_repeats=10):

# convert config to a key

key = str(config)

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

# summarize score

result = mean(scores)

print('> Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test):

# evaluate configs

scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores
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# create a list of configs to try

def model_configs():

# define scope of configs

n_input = [12]

n_filters = [64]

n_kernels = [3, 5]

n_epochs = [100]

n_batch = [1, 150]

n_diff = [0, 12]

# create configs

configs = list()

for a in n_input:

for b in n_filters:

for c in n_kernels:

for d in n_epochs:

for e in n_batch:

for f in n_diff:

cfg = [a,b,c,d,e,f]

configs.append(cfg)

print('Total configs: %d' % len(configs))

return configs

# define dataset

series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

cfg_list = model_configs()

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 10 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 15.39: Example of demonstrating the grid search framework for evaluating a CNN model
configurations on the airline passengers dataset.

Running the example, we can see that only eight distinct configurations are evaluated. We
can see that a configuration of [12, 64, 5, 100, 1, 12] achieved an RMSE of 18.89, which
is skillful as compared to a naive forecast model that achieved 50.70. We can unpack this
configuration as:

� n input: 12

� n filters: 64

� n kernel: 5

� n epochs: 100

� n batch: 1

� n diff: 12
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A truncated example output of the grid search is listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

Total configs: 8

> 23.372

> 28.317

> 31.070

...

> 20.923

> 18.700

> 18.210

> Model[[12, 64, 5, 100, 150, 12]] 19.152

done

[12, 64, 5, 100, 1, 12] 18.89593462072732

[12, 64, 5, 100, 150, 12] 19.152486150334234

[12, 64, 3, 100, 150, 12] 19.44680151564605

Listing 15.40: Example output from demonstrating the grid search framework for evaluating a
CNN model configurations on the airline passengers dataset.

15.6 Long Short-Term Memory Network Model

We can now adopt the framework for grid searching the hyperparameters of an LSTM model.
For more details on modeling a univariate time series with an LSTM network, see Chapter 9.
The hyperparameters for the LSTM model will be the same five as the MLP; they are:

� n input: The number of prior inputs to use as input for the model (e.g. 12 months).

� n nodes: The number of nodes to use in the hidden layer (e.g. 50).

� n epochs: The number of training epochs (e.g. 1000).

� n batch: The number of samples to include in each mini-batch (e.g. 32).

� n diff: The difference order (e.g. 0 or 12).

We will define a simple LSTM model with a single hidden LSTM layer and the number of
nodes specifying the number of units in this layer.

# define model

model = Sequential()

model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, n_features)))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit model

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

Listing 15.41: Example of defining an LSTM model.
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It may be interesting to explore tuning additional configurations such as the use of a
bidirectional input layer, stacked LSTM layers, and even hybrid models with CNN or ConvLSTM
input models. As with the CNN model, the LSTM model expects input data to have a three-
dimensional shape for the samples, time steps, and features.

# reshape input data into [samples, timesteps, features]

n_features = 1

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))

Listing 15.42: Example of reshaping training data for the LSTM model.

The complete implementation of the model fit() function is listed below.

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

# transform series into supervised format

data = series_to_supervised(train, n_input)

# separate inputs and outputs

train_x, train_y = data[:, :-1], data[:, -1]

# reshape input data into [samples, timesteps, features]

n_features = 1

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))

# define model

model = Sequential()

model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, n_features)))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit model

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

Listing 15.43: Example of a function for fitting an LSTM model.

Also like the CNN, the single input sample used to make a prediction must also be reshaped
into the expected three-dimensional structure.

# reshape sample into [samples, timesteps, features]

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

Listing 15.44: Example of reshaping a single sample for making a prediction.

The complete model predict() function is listed below.

# forecast with the fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, n_diff = config

# prepare data

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

history = difference(history, n_diff)
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# reshape sample into [samples, timesteps, features]

x_input = array(history[-n_input:]).reshape((1, n_input, 1))

# forecast

yhat = model.predict(x_input, verbose=0)

return correction + yhat[0]

Listing 15.45: Example of a function for making a forecast with a fit LSTM model.

We can now define the function used to create the list of model configurations to evaluate.
The LSTM model is quite a bit slower to train than MLP and CNN models; as such, you
may want to evaluate fewer configurations per run. We will define a very simple set of two
configurations to explore: stochastic and batch gradient descent.

# create a list of configs to try

def model_configs():

# define scope of configs

n_input = [12]

n_nodes = [100]

n_epochs = [50]

n_batch = [1, 150]

n_diff = [12]

# create configs

configs = list()

for i in n_input:

for j in n_nodes:

for k in n_epochs:

for l in n_batch:

for m in n_diff:

cfg = [i, j, k, l, m]

configs.append(cfg)

print('Total configs: %d' % len(configs))

return configs

Listing 15.46: Example of a function for defining model configurations to evaluate.

We now have everything we need to grid search hyperparameters for the LSTM model for
univariate time series forecasting. The complete example is listed below.

# grid search lstm for monthly airline passengers dataset

from math import sqrt

from numpy import array

from numpy import mean

from pandas import DataFrame

from pandas import concat

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

# split a univariate dataset into train/test sets

def train_test_split(data, n_test):

return data[:-n_test], data[-n_test:]

# transform list into supervised learning format

def series_to_supervised(data, n_in, n_out=1):

df = DataFrame(data)
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cols = list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

# put it all together

agg = concat(cols, axis=1)

# drop rows with NaN values

agg.dropna(inplace=True)

return agg.values

# root mean squared error or rmse

def measure_rmse(actual, predicted):

return sqrt(mean_squared_error(actual, predicted))

# difference dataset

def difference(data, order):

return [data[i] - data[i - order] for i in range(order, len(data))]

# fit a model

def model_fit(train, config):

# unpack config

n_input, n_nodes, n_epochs, n_batch, n_diff = config

# prepare data

if n_diff > 0:

train = difference(train, n_diff)

# transform series into supervised format

data = series_to_supervised(train, n_in=n_input)

# separate inputs and outputs

train_x, train_y = data[:, :-1], data[:, -1]

# reshape input data into [samples, timesteps, features]

n_features = 1

train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))

# define model

model = Sequential()

model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, n_features)))

model.add(Dense(n_nodes, activation='relu'))

model.add(Dense(1))

model.compile(loss='mse', optimizer='adam')

# fit model

model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)

return model

# forecast with the fit model

def model_predict(model, history, config):

# unpack config

n_input, _, _, _, n_diff = config

# prepare data

correction = 0.0

if n_diff > 0:

correction = history[-n_diff]

history = difference(history, n_diff)

# reshape sample into [samples, timesteps, features]

x_input = array(history[-n_input:]).reshape((1, n_input, 1))
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# forecast

yhat = model.predict(x_input, verbose=0)

return correction + yhat[0]

# walk-forward validation for univariate data

def walk_forward_validation(data, n_test, cfg):

predictions = list()

# split dataset

train, test = train_test_split(data, n_test)

# fit model

model = model_fit(train, cfg)

# seed history with training dataset

history = [x for x in train]

# step over each time-step in the test set

for i in range(len(test)):

# fit model and make forecast for history

yhat = model_predict(model, history, cfg)

# store forecast in list of predictions

predictions.append(yhat)

# add actual observation to history for the next loop

history.append(test[i])

# estimate prediction error

error = measure_rmse(test, predictions)

print(' > %.3f' % error)

return error

# score a model, return None on failure

def repeat_evaluate(data, config, n_test, n_repeats=10):

# convert config to a key

key = str(config)

# fit and evaluate the model n times

scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]

# summarize score

result = mean(scores)

print('> Model[%s] %.3f' % (key, result))

return (key, result)

# grid search configs

def grid_search(data, cfg_list, n_test):

# evaluate configs

scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]

# sort configs by error, asc

scores.sort(key=lambda tup: tup[1])

return scores

# create a list of configs to try

def model_configs():

# define scope of configs

n_input = [12]

n_nodes = [100]

n_epochs = [50]

n_batch = [1, 150]

n_diff = [12]

# create configs

configs = list()

for i in n_input:
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for j in n_nodes:

for k in n_epochs:

for l in n_batch:

for m in n_diff:

cfg = [i, j, k, l, m]

configs.append(cfg)

print('Total configs: %d' % len(configs))

return configs

# define dataset

series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)

data = series.values

# data split

n_test = 12

# model configs

cfg_list = model_configs()

# grid search

scores = grid_search(data, cfg_list, n_test)

print('done')

# list top 10 configs

for cfg, error in scores[:3]:

print(cfg, error)

Listing 15.47: Example of demonstrating the grid search framework for evaluating an LSTM
model configurations on the airline passengers dataset.

Running the example, we can see that only two distinct configurations are evaluated. We
can see that a configuration of [12, 100, 50, 1, 12] achieved an RMSE of 21.24, which is
skillful as compared to a naive forecast model that achieved 50.70. The model requires a lot
more tuning and may do much better with a hybrid configuration, such as having a CNN model
as input. We can unpack this configuration as:

� n input: 12

� n nodes: 100

� n epochs: 50

� n batch: 1

� n diff: 12

A truncated example output of the grid search is listed below.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

Total configs: 2

> 20.488

> 17.718

> 21.213

...

> 22.300

> 20.311
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> 21.322

> Model[[12, 100, 50, 150, 12]] 21.260

done

[12, 100, 50, 1, 12] 21.243775750634093

[12, 100, 50, 150, 12] 21.259553398553606

Listing 15.48: Example output from demonstrating the grid search framework for evaluating an
LSTM model configurations on the airline passengers dataset.

15.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� More Configurations. Explore a large suite of configurations for one of the models and
see if you can find a configuration that results in better performance.

� Data Scaling. Update the grid search framework to also support the scaling (normal-
ization and/or standardization) of data both before fitting the model and inverting the
transform for predictions.

� Network Architecture. Explore the grid searching larger architectural changes for a
given model, such as the addition of more hidden layers.

� New Dataset. Explore the grid search of a given model in a new univariate time series
dataset.

� Multivariate. Update the grid search framework to support small multivariate time
series datasets, e.g. datasets with multiple input variables.

If you explore any of these extensions, I’d love to know.

15.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Pooling Layers API.
https://keras.io/layers/pooling/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/
https://keras.io/layers/recurrent/
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15.9 Summary

In this tutorial, you discovered how to develop a framework to grid search hyperparameters for
deep learning models. Specifically, you learned:

� How to develop a generic grid searching framework for tuning model hyperparameters.

� How to grid search hyperparameters for a Multilayer Perceptron model on the airline
passengers univariate time series forecasting problem.

� How to adapt the framework to grid search hyperparameters for convolutional and long
short-term memory neural networks.

15.9.1 Next

This is the final lesson of this part, the next part will focus how to systematically work through
a real-world multivariate multi-step time series problem to forecast household energy usage.



Part V

Multi-step Forecasting
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Overview

This part focuses on the real-world problem of multi-step forecasting for household electricity
consumption and how to develop naive methods, classical autoregression models, Convolutional
and Long Short-Term Memory neural network models for the problem. The tutorials in this
part do not seek to demonstrate the best way to solve the problem, instead the dataset provides
a context on which each of the specific methods can be demonstrated. As such, the performance
of each method on the dataset are not compared directly. After reading the chapters in this
part, you will know:

� How to load, summarize and visualize a multivariate time series dataset describing
household electricity consumption over many years (Chapter 16).

� How to develop naive forecasting models for forecasting household electricity usage, the
results of which can be used as a baseline to determine whether a more sophisticated
model has skill (Chapter 17).

� How to diagnose the autocorrelation and develop autoregressive models for forecasting
household electricity usage (Chapter 18).

� How to develop a suite of convolutional neural network models for forecasting household
electricity usage (Chapter 19).

� How to develop a suite of Long Short-Term Memory neural network models for forecasting
household electricity usage (Chapter 20).
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Chapter 16

How to Load and Explore Household
Energy Usage Data

Given the rise of smart electricity meters and the wide adoption of electricity generation
technology like solar panels, there is a wealth of electricity usage data available. This data
represents a multivariate time series of power-related variables, that in turn could be used to
model and even forecast future electricity consumption. In this tutorial, you will discover a
household power consumption dataset for multi-step time series forecasting and how to better
understand the raw data using exploratory analysis. This dataset will provided the basis for the
remaining tutorials in this part of the book. After completing this tutorial, you will know:

� The household power consumption dataset that describes electricity usage for a single
house over four years.

� How to explore and understand the dataset using a suite of line plots for the series data
and histogram for the data distributions.

� How to use the new understanding of the problem to consider different framings of the
prediction problem, ways the data may be prepared, and modeling methods that may be
used.

Let’s get started.

16.1 Tutorial Overview

This tutorial is divided into five parts; they are:

1. Power Consumption Dataset

2. Load Dataset

3. Patterns in Observations Over Time

4. Time Series Data Distributions

5. Ideas on Modeling

322



16.2. Household Power Consumption Dataset 323

Note: The data visualizations in this tutorial are intended to be quick-and-dirty to rapidly
learn about the dataset, rather than used as the basis for presentation. As such they are more
utilitarian and less aesthetic.

16.2 Household Power Consumption Dataset

The Household Power Consumption dataset is a multivariate time series dataset that describes
the electricity consumption for a single household over four years. The data was collected
between December 2006 and November 2010 and observations of power consumption within the
household were collected every minute. It is a multivariate series comprised of seven variables
(besides the date and time); they are:

� global active power: The total active power consumed by the household (kilowatts).

� global reactive power: The total reactive power consumed by the household (kilowatts).

� voltage: Average voltage (volts).

� global intensity: Average current intensity (amps).

� sub metering 1: Active energy for kitchen (watt-hours of active energy).

� sub metering 2: Active energy for laundry (watt-hours of active energy).

� sub metering 3: Active energy for climate control systems (watt-hours of active energy).

Active and reactive energy refer to the technical details of alternative current. In general
terms, the active energy is the real power consumed by the household, whereas the reactive
energy is the unused power in the lines. We can see that the dataset provides the active power
as well as some division of the active power by main circuit in the house, specifically the kitchen,
laundry, and climate control. These are not all the circuits in the household. The remaining
watt-hours can be calculated from the active energy by first converting the active energy to
watt-hours then subtracting the other sub-metered active energy in watt-hours, as follows:

remainder = (
global act pwr × 1000

60
) − (sub met 1 + sub met 2 + sub met 3) (16.1)

The dataset seems to have been provided without a seminal reference paper. Nevertheless,
this dataset has become a standard for evaluating time series forecasting and machine learning
methods for multi-step forecasting, specifically for forecasting active power. Further, it is not
clear whether the other features in the dataset may benefit a model in forecasting active power.

16.3 Load Dataset

The dataset is described and has been made freely available on the UCI Machine Learning
repository1. The dataset can be downloaded as a single 20 megabyte zip file. A direct download
link is provided blow:

1https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
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� household power consumption.zip 2

Download the dataset and unzip it into your current working directory. You will now have
the file household power consumption.txt that is about 127 megabytes in size and contains
all of the observations Inspect the data file. Below are the first five rows of data (and the header)
from the raw data file.

Date;Time;Global_active_power;Global_reactive_power;Voltage;Global_intensity;...

16/12/2006;17:24:00;4.216;0.418;234.840;18.400;0.000;1.000;17.000

16/12/2006;17:25:00;5.360;0.436;233.630;23.000;0.000;1.000;16.000

16/12/2006;17:26:00;5.374;0.498;233.290;23.000;0.000;2.000;17.000

16/12/2006;17:27:00;5.388;0.502;233.740;23.000;0.000;1.000;17.000

16/12/2006;17:28:00;3.666;0.528;235.680;15.800;0.000;1.000;17.000

...

Listing 16.1: Sample of the household power consumption dataset.

We can see that the data columns are separated by semicolons (‘;’). The data is reported
to have one row for each day in the time period. The data does have missing values; for example,
we can see 2-3 days worth of missing data around 28/4/2007.

...

28/4/2007;00:20:00;0.492;0.208;236.240;2.200;0.000;0.000;0.000

28/4/2007;00:21:00;?;?;?;?;?;?;

28/4/2007;00:22:00;?;?;?;?;?;?;

28/4/2007;00:23:00;?;?;?;?;?;?;

28/4/2007;00:24:00;?;?;?;?;?;?;

...

Listing 16.2: Sample of the household power consumption dataset with missing values.

We can start-off by loading the data file as a Pandas DataFrame and summarize the loaded
data. We can use the read csv() function to load the data. It is easy to load the data with this
function, but a little tricky to load it correctly. Specifically, we need to do a few custom things:

� Specify the separate between columns as a semicolon (sep=‘;’)

� Specify that line 0 has the names for the columns (header=0)

� Specify that we have lots of RAM to avoid a warning that we are loading the data as an
array of objects instead of an array of numbers, because of the ‘?’ values for missing
data (low memory=False).

� Specify that it is okay for Pandas to try to infer the date-time format when parsing dates,
which is way faster (infer datetime format=True)

� Specify that we would like to parse the date and time columns together as a new column
called ’datetime’ (parse dates=‘datetime’:[0,1])

� Specify that we would like our new datetime column to be the index for the DataFrame

(index col=[’datetime’]).

2https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.

zip

https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.zip
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Putting all of this together, we can now load the data and summarize the loaded shape and
first few rows.

# load all data

dataset = read_csv('household_power_consumption.txt', sep=';', header=0, low_memory=False,

infer_datetime_format=True, parse_dates={'datetime':[0,1]}, index_col=['datetime'])

# summarize

print(dataset.shape)

print(dataset.head())

Listing 16.3: Example of loading and summarizing the dataset.

Next, we can mark all missing values indicated with a ‘?’ character with a NaN value, which
is a float. This will allow us to work with the data as one array of floating point values rather
than mixed types, which is less efficient.

# mark all missing values

dataset.replace('?', nan, inplace=True)

Listing 16.4: Example of replacing missing values with NaN.

Now we can create a new column that contains the remainder of the sub-metering, using the
calculation from the previous section.

# add a column for for the remainder of sub metering

values = dataset.values.astype('float32')

dataset['sub_metering_4'] = (values[:,0] * 1000 / 60) - (values[:,4] + values[:,5] +

values[:,6])

Listing 16.5: Example of calculating the remaining sub-metered data.

We can now save the cleaned-up version of the dataset to a new file; in this case we will just
change the file extension to .csv and save the dataset as household power consumption.csv.

# save updated dataset

dataset.to_csv('household_power_consumption.csv')

Listing 16.6: Example of saving the dataset to a new file.

To confirm that we have not messed-up, we can re-load the dataset and summarize the first
five rows.

# load the new file

dataset = read_csv('household_power_consumption.csv', header=None)

print(dataset.head())

Listing 16.7: Example of loading the newly saved data file

Tying all of this together, the complete example of loading, cleaning-up, and saving the
dataset is listed below.

# load and clean-up power usage data

from numpy import nan

from pandas import read_csv

# load all data

dataset = read_csv('household_power_consumption.txt', sep=';', header=0, low_memory=False,

infer_datetime_format=True, parse_dates={'datetime':[0,1]}, index_col=['datetime'])

# summarize

print(dataset.shape)
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print(dataset.head())

# mark all missing values

dataset.replace('?', nan, inplace=True)

# add a column for for the remainder of sub metering

values = dataset.values.astype('float32')

dataset['sub_metering_4'] = (values[:,0] * 1000 / 60) - (values[:,4] + values[:,5] +

values[:,6])

# save updated dataset

dataset.to_csv('household_power_consumption.csv')

# load the new dataset and summarize

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

print(dataset.head())

Listing 16.8: Example of loading and preparing the power consumption dataset.

Running the example first loads the raw data and summarizes the shape and first five rows
of the loaded data.

(2075259, 7)

Global_active_power ... Sub_metering_3

datetime ...

2006-12-16 17:24:00 4.216 ... 17.0

2006-12-16 17:25:00 5.360 ... 16.0

2006-12-16 17:26:00 5.374 ... 17.0

2006-12-16 17:27:00 5.388 ... 17.0

2006-12-16 17:28:00 3.666 ... 17.0

Listing 16.9: Example of the loaded raw dataset.

The dataset is then cleaned up and saved to a new file. We load this new file and again print
the first five rows, showing the removal of the date and time columns and addition of the new
sub-metered column.

Global_active_power ... sub_metering_4

datetime ...

2006-12-16 17:24:00 4.216 ... 52.266670

2006-12-16 17:25:00 5.360 ... 72.333336

2006-12-16 17:26:00 5.374 ... 70.566666

2006-12-16 17:27:00 5.388 ... 71.800000

2006-12-16 17:28:00 3.666 ... 43.100000

Listing 16.10: Example of the prepared dataset.

We can peek inside the new household power consumption.csv file and check that the
missing observations are marked with an empty column, that Pandas will correctly read as NaN,
for example around row 190,499:

...

2007-04-28 00:20:00,0.492,0.208,236.240,2.200,0.000,0.000,0.0,8.2

2007-04-28 00:21:00,,,,,,,,

2007-04-28 00:22:00,,,,,,,,

2007-04-28 00:23:00,,,,,,,,

2007-04-28 00:24:00,,,,,,,,

2007-04-28 00:25:00,,,,,,,,

...
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Listing 16.11: Sample of the prepared dataset with missing values.

Now that we have a cleaned-up version of the dataset, we can investigate it further using
visualizations.

16.4 Patterns in Observations Over Time

The data is a multivariate time series and the best way to understand a time series is to create
line plots. We can start off by creating a separate line plot for each of the eight variables. The
complete example is listed below.

# line plots for power usage dataset

from pandas import read_csv

from matplotlib import pyplot

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# line plot for each variable

pyplot.figure()

for i in range(len(dataset.columns)):

# create subplot

pyplot.subplot(len(dataset.columns), 1, i+1)

# get variable name

name = dataset.columns[i]

# plot data

pyplot.plot(dataset[name])

# set title

pyplot.title(name, y=0)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 16.12: Example of creating line plots from the prepared dataset.

Running the example creates a single image with eight subplots, one for each variable. This
gives us a really high level of the four years of one minute observations. We can see that
something interesting was going on in Sub metering 3 (environmental control) that may not
directly map to hot or cold years. Perhaps new systems were installed.

Interestingly, the contribution of sub metering 4 seems to decrease with time, or show a
downward trend, perhaps matching up with the solid increase in seen towards the end of the
series for Sub metering 3. These observations do reinforce the need to honor the temporal
ordering of subsequences of this data when fitting and evaluating any model. We might be able
to see the wave of a seasonal effect in the Global active power and some other variates. There
is some spiky usage that may match up with a specific period, such as weekends.
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Figure 16.1: Line Plots of Each Variable in the Power Consumption Dataset.

Let’s zoom in and focus on the Global active power, or active power for short. We can
create a new plot of the active power for each year to see if there are any common patterns
across the years. The first year, 2006, has less than one month of data, so will remove it from
the plot. The complete example is listed below.

# yearly line plots for power usage dataset

from pandas import read_csv

from matplotlib import pyplot

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# plot active power for each year

years = ['2007', '2008', '2009', '2010']

pyplot.figure()

for i in range(len(years)):

# prepare subplot

ax = pyplot.subplot(len(years), 1, i+1)

# determine the year to plot

year = years[i]

# get all observations for the year

result = dataset[str(year)]

# plot the active power for the year

pyplot.plot(result['Global_active_power'])
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# add a title to the subplot

pyplot.title(str(year), y=0, loc='left')

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 16.13: Example of creating line plots of power consumption per year.

Running the example creates one single image with four line plots, one for each full year
(or mostly full years) of data in the dataset. We can see some common gross patterns across
the years, such as around Feb-Mar and around Aug-Sept where we see a marked decrease in
consumption. We also seem to see a downward trend over the summer months (middle of the
year in the northern hemisphere) and perhaps more consumption in the winter months towards
the edges of the plots. These may show an annual seasonal pattern in consumption. We can
also see a few patches of missing data in at least the first, third, and fourth plots.

Figure 16.2: Line Plots of Active Power for Most Years.

We can continue to zoom in on consumption and look at active power for each of the 12
months of 2007. This might help tease out gross structures across the months, such as daily
and weekly patterns. The complete example is listed below.

# monthly line plots for power usage dataset
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from pandas import read_csv

from matplotlib import pyplot

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# plot active power for each year

months = [x for x in range(1, 13)]

pyplot.figure()

for i in range(len(months)):

# prepare subplot

ax = pyplot.subplot(len(months), 1, i+1)

# determine the month to plot

month = '2007-' + str(months[i])

# get all observations for the month

result = dataset[month]

# plot the active power for the month

pyplot.plot(result['Global_active_power'])

# add a title to the subplot

pyplot.title(month, y=0, loc='left')

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 16.14: Example of creating line plots of power consumption per month.

Running the example creates a single image with 12 line plots, one for each month in 2007.
We can see the sign-wave of power consumption of the days within each month. This is good as
we would expect some kind of daily pattern in power consumption. We can see that there are
stretches of days with very minimal consumption, such as in August and in April. These may
represent vacation periods where the home was unoccupied and where power consumption was
minimal.
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Figure 16.3: Line Plots for Active Power for All Months in One Year.

Finally, we can zoom in one more level and take a closer look at power consumption at the
daily level. We would expect there to be some pattern to consumption each day, and perhaps
differences in days over a week. The complete example is listed below.

# daily line plots for power usage dataset

from pandas import read_csv

from matplotlib import pyplot

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# plot active power for each year

days = [x for x in range(1, 20)]

pyplot.figure()

for i in range(len(days)):

# prepare subplot

ax = pyplot.subplot(len(days), 1, i+1)

# determine the day to plot

day = '2007-01-' + str(days[i])

# get all observations for the day

result = dataset[day]

# plot the active power for the day

pyplot.plot(result['Global_active_power'])

# add a title to the subplot

pyplot.title(day, y=0, loc='left', size=6)
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# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 16.15: Example of creating line plots of power consumption per day.

Running the example creates a single image with 20 line plots, one for the first 20 days in
January 2007. There is commonality across the days; for example, many days consumption
starts early morning, around 6-7AM. Some days show a drop in consumption in the middle of
the day, which might make sense if most occupants are out of the house. We do see some strong
overnight consumption on some days, that in a northern hemisphere January may match up
with a heating system being used. Time of year, specifically the season and the weather that it
brings, will be an important factor in modeling this data, as would be expected.

Figure 16.4: Line Plots for Active Power for 20 Days in One Month.

16.5 Time Series Data Distributions

Another important area to consider is the distribution of the variables. For example, it may be
interesting to know if the distributions of observations are Gaussian or some other distribution.
We can investigate the distributions of the data by reviewing histograms. We can start-off by
creating a histogram for each variable in the time series. The complete example is listed below.
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# histogram plots for power usage dataset

from pandas import read_csv

from matplotlib import pyplot

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# histogram plot for each variable

pyplot.figure()

for i in range(len(dataset.columns)):

# create subplot

pyplot.subplot(len(dataset.columns), 1, i+1)

# get variable name

name = dataset.columns[i]

# create histogram

dataset[name].hist(bins=100)

# set title

pyplot.title(name, y=0, loc='right')

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 16.16: Example of creating histograms for each variable.

Running the example creates a single figure with a separate histogram for each of the 8
variables. We can see that active and reactive power, intensity, as well as the sub-metered power
are all skewed distributions down towards small watt-hour or kilowatt values. We can also see
that distribution of voltage data is strongly Gaussian.
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Figure 16.5: Histogram plots for Each Variable in the Power Consumption Dataset.

The distribution of active power appears to be bi-modal, meaning it looks like it has two
mean groups of observations. We can investigate this further by looking at the distribution of
active power consumption for the four full years of data. The complete example is listed below.

# yearly histogram plots for power usage dataset

from pandas import read_csv

from matplotlib import pyplot

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# plot active power for each year

years = ['2007', '2008', '2009', '2010']

pyplot.figure()

for i in range(len(years)):

# prepare subplot

ax = pyplot.subplot(len(years), 1, i+1)

# determine the year to plot

year = years[i]

# get all observations for the year

result = dataset[str(year)]

# plot the active power for the year

result['Global_active_power'].hist(bins=100)

# zoom in on the distribution

ax.set_xlim(0, 5)
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# add a title to the subplot

pyplot.title(str(year), y=0, loc='right')

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 16.17: Example of creating histograms of power consumption per year.

Running the example creates a single plot with four figures, one for each of the years between
2007 to 2010. We can see that the distribution of active power consumption across those years
looks very similar. The distribution is indeed bimodal with one peak around 0.3 KW and
perhaps another around 1.3 KW. There is a long tail on the distribution to higher kilowatt
values. It might open the door to notions of discretizing the data and separating it into peak
1, peak 2 or long tail. These groups or clusters for usage on a day or hour may be helpful in
developing a predictive model.

Figure 16.6: Histogram Plots of Active Power for Most Years.

It is possible that the identified groups may vary over the seasons of the year. We can
investigate this by looking at the distribution for active power for each month in a year. The
complete example is listed below.

# monthly histogram plots for power usage dataset
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from pandas import read_csv

from matplotlib import pyplot

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# plot active power for each year

months = [x for x in range(1, 13)]

pyplot.figure()

for i in range(len(months)):

# prepare subplot

ax = pyplot.subplot(len(months), 1, i+1)

# determine the month to plot

month = '2007-' + str(months[i])

# get all observations for the month

result = dataset[month]

# plot the active power for the month

result['Global_active_power'].hist(bins=100)

# zoom in on the distribution

ax.set_xlim(0, 5)

# add a title to the subplot

pyplot.title(month, y=0, loc='right')

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 16.18: Example of creating histograms of power consumption per month.

Running the example creates an image with 12 plots, one for each month in 2007. We can
see generally the same data distribution each month. The axes for the plots appear to align
(given the similar scales), and we can see that the peaks are shifted down in the warmer northern
hemisphere months and shifted up for the colder months. We can also see a thicker or more
prominent tail toward larger kilowatt values for the cooler months of December through to
March.
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Figure 16.7: Histogram Plots for Active Power for All Months in One Year.

16.6 Ideas on Modeling

Now that we know how to load and explore the dataset, we can pose some ideas on how to
model the dataset. In this section, we will take a closer look at three main areas when working
with the data; they are:

1. Problem Framing

2. Data Preparation

3. Modeling Methods

16.6.1 Problem Framing

There does not appear to be a seminal publication for the dataset to demonstrate the intended
way to frame the data in a predictive modeling problem. We are therefore left to guess at
possibly useful ways that this data may be used. The data is only for a single household,
but perhaps effective modeling approaches could be generalized across to similar households.
Perhaps the most useful framing of the dataset is to forecast an interval of future active power
consumption.
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Four examples include:

� Forecast hourly consumption for the next day.

� Forecast daily consumption for the next week.

� Forecast daily consumption for the next month.

� Forecast monthly consumption for the next year.

Generally, these types of forecasting problems are referred to as multi-step forecasting.
Models that make use of all of the variables might be referred to as a multivariate multi-step
forecasting models. Each of these models is not limited to forecasting the minutely data,
but instead could model the problem at or below the chosen forecast resolution. Forecasting
consumption in turn, at scale, could aid in a utility company forecasting demand, which is a
widely studied and important problem.

16.6.2 Data Preparation

There is a lot of flexibility in preparing this data for modeling. The specific data preparation
methods and their benefit really depend on the chosen framing of the problem and the modeling
methods. Nevertheless, below is a list of general data preparation methods that may be useful:

� Daily differencing may be useful to adjust for the daily cycle in the data.

� Annual differencing may be useful to adjust for any yearly cycle in the data.

� Normalization may aid in reducing the variables with differing units to the same scale.

There are many simple human factors that may be helpful in engineering features from the
data, that in turn may make specific days easier to forecast. Some examples include:

� Indicating the time of day, to account for the likelihood of people being home or not.

� Indicating whether a day is a weekday or weekend.

� Indicating whether a day is a North American public holiday or not.

These factors may be significantly less important for forecasting monthly data, and perhaps
to a degree for weekly data. More general features may include:

� Indicating the season, which may lead to the type or amount environmental control systems
being used.

16.6.3 Modeling Methods

There are perhaps four classes of methods that might be interesting to explore on this problem;
they are:

1. Naive Methods.

2. Classical Linear Methods.

3. Machine Learning Methods.

4. Deep Learning Methods.
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16.6.4 Naive Methods

Naive methods would include methods that make very simple, but often very effective assump-
tions. Some examples include:

� Tomorrow will be the same as today.

� Tomorrow will be the same as this day last year.

� Tomorrow will be an average of the last few days.

Classical Linear Methods

Classical linear methods include techniques are very effective for univariate time series forecasting.
Two important examples include:

� SARIMA.

� ETS (triple exponential smoothing).

They would require that the additional variables be discarded and the parameters of the
model be configured or tuned to the specific framing of the dataset. Concerns related to adjusting
the data for daily and seasonal structures can also be supported directly.

Machine Learning Methods

Machine learning methods require that the problem be framed as a supervised learning problem.
This would require that lag observations for a series be framed as input features, discarding
the temporal relationship in the data. A suite of nonlinear and ensemble methods could be
explored, including:

� k-Nearest Neighbors.

� Support Vector Machines.

� Decision Trees.

� Random Forest.

� Gradient Boosting Machines.

Careful attention is required to ensure that the fitting and evaluation of these models
preserved the temporal structure in the data. This is important so that the method is not
able to cheat by harnessing observations from the future. These methods are often agnostic to
large numbers of variables and may aid in teasing out whether the additional variables can be
harnessed and add value to predictive models.
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Deep Learning Methods

Generally, neural networks have not proven very effective at autoregression type problems.
Nevertheless, techniques such as convolutional neural networks are able to automatically learn
complex features from raw data, including one-dimensional signal data. And recurrent neural
networks, such as the long short-term memory network, are capable of directly learning across
multiple parallel sequences of input data. Further, combinations of these methods, such as
CNN-LSTM and ConvLSTM, have proven effective on time series classification tasks. It is
possible that these methods may be able to harness the large volume of minute-based data and
multiple input variables.

16.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� List Intuitions. Outline the method that you believe may be most effective in making
forecasts with on this dataset.

� Apply Taxonomy. Use the taxonomy in Chapter 2 to describe the dataset presented in
this chapter.

� Additional Analysis. Use summary statistics and/or plots to explore one more aspect
of the dataset that may provide insight into modeling this problem.

If you explore any of these extensions, I’d love to know.

16.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

16.8.1 APIs

� pandas.read csv API.
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

� matplotlib.pyplot API.
https://matplotlib.org/api/pyplot_api.html

16.8.2 Articles

� Household Power Consumption Dataset, UCI Machine Learning Repository.
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+

consumption

� AC power, Wikipedia.
https://en.wikipedia.org/wiki/AC_power#Active,_reactive,_and_apparent_power

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://matplotlib.org/api/pyplot_api.html
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://en.wikipedia.org/wiki/AC_power#Active,_reactive,_and_apparent_power
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16.9 Summary

In this tutorial, you discovered a household power consumption dataset for multi-step time series
forecasting and how to better understand the raw data using exploratory analysis. Specifically,
you learned:

� The household power consumption dataset that describes electricity usage for a single
house over four years.

� How to explore and understand the dataset using a suite of line plots for the series data
and histogram for the data distributions.

� How to use the new understanding of the problem to consider different framings of the
prediction problem, ways the data may be prepared, and modeling methods that may be
used.

16.9.1 Next

In the next lesson, you will discover how to develop robust naive models for forecasting the
household power usage problem.



Chapter 17

How to Develop Naive Models for
Multi-step Energy Usage Forecasting

Given the rise of smart electricity meters and the wide adoption of electricity generation
technology like solar panels, there is a wealth of electricity usage data available. This data
represents a multivariate time series of power-related variables that in turn could be used to
model and even forecast future electricity consumption. In this tutorial, you will discover how to
develop a test harness for the Household Power Consumption dataset and evaluate three naive
forecast strategies that provide a baseline for more sophisticated algorithms. After completing
this tutorial, you will know:

� How to load, prepare, and downsample the household power consumption dataset ready
for developing models.

� How to develop metrics, dataset split, and walk-forward validation elements for a robust
test harness for evaluating forecasting models.

� How to develop and evaluate and compare the performance a suite of naive persistence
forecasting methods.

Let’s get started.

17.1 Tutorial Overview

This tutorial is divided into four parts; they are:

1. Problem Description

2. Load and Prepare Dataset

3. Model Evaluation

4. Develop Naive Forecast Models

342
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17.2 Problem Description

The Household Power Consumption dataset is a multivariate time series dataset that describes
the electricity consumption for a single household over four years. The data was collected
between December 2006 and November 2010 and observations of power consumption within the
household were collected every minute. It is a multivariate series comprised of seven variables
(besides the date and time); they are:

� global active power: The total active power consumed by the household (kilowatts).

� global reactive power: The total reactive power consumed by the household (kilowatts).

� voltage: Average voltage (volts).

� global intensity: Average current intensity (amps).

� sub metering 1: Active energy for kitchen (watt-hours of active energy).

� sub metering 2: Active energy for laundry (watt-hours of active energy).

� sub metering 3: Active energy for climate control systems (watt-hours of active energy).

Active and reactive energy refer to the technical details of alternative current. A fourth
sub-metering variable can be created by subtracting the sum of three defined sub-metering
variables from the total active energy. This dataset was introduced and analyzed in Chapter 16.
Refer to that chapter for more details if needed.

17.3 Load and Prepare Dataset

The dataset can be downloaded as a single 20 megabyte zip file. A direct download link is
provided blow:

� household power consumption.zip 1

Download the dataset and unzip it into your current working directory. You will now have
the file household power consumption.txt that is about 127 megabytes in size and contains
all of the observations. We can use the read csv() function to load the data and combine the
first two columns into a single date-time column that we can use as an index.

# load all data

dataset = read_csv('household_power_consumption.txt', sep=';', header=0, low_memory=False,

infer_datetime_format=True, parse_dates={'datetime':[0,1]}, index_col=['datetime'])

Listing 17.1: Example of loading the dataset.

Next, we can mark all missing values indicated with a ‘?’ character with a NaN value, which
is a float. This will allow us to work with the data as one array of floating point values rather
than mixed types (less efficient.)

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.

zip

https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/household_power_consumption.zip
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# mark all missing values

dataset.replace('?', nan, inplace=True)

# make dataset numeric

dataset = dataset.astype('float32')

Listing 17.2: Example of marking missing values.

We also need to fill in the missing values now that they have been marked. A very simple
approach would be to copy the observation from the same time the day before. We can implement
this in a function named fill missing() that will take the NumPy array of the data and copy
values from exactly 24 hours ago.

# fill missing values with a value at the same time one day ago

def fill_missing(values):

one_day = 60 * 24

for row in range(values.shape[0]):

for col in range(values.shape[1]):

if isnan(values[row, col]):

values[row, col] = values[row - one_day, col]

Listing 17.3: Example of a function for filling missing values.

We can apply this function directly to the data within the DataFrame.

# fill missing

fill_missing(dataset.values)

Listing 17.4: Example filling missing values.

Now we can create a new column that contains the remainder of the sub-metering, using the
calculation from the previous section.

# add a column for for the remainder of sub metering

values = dataset.values

dataset['sub_metering_4'] = (values[:,0] * 1000 / 60) - (values[:,4] + values[:,5] +

values[:,6])

Listing 17.5: Example of calculating the remaining sub-metered power.

We can now save the cleaned-up version of the dataset to a new file; in this case we will just
change the file extension to .csv and save the dataset as household power consumption.csv.

# save updated dataset

dataset.to_csv('household_power_consumption.csv')

Listing 17.6: Example of saving the prepared dataset to file.

Tying all of this together, the complete example of loading, cleaning-up, and saving the
dataset is listed below.

# load and clean-up the power usage dataset

from numpy import nan

from numpy import isnan

from pandas import read_csv

# fill missing values with a value at the same time one day ago

def fill_missing(values):

one_day = 60 * 24
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for row in range(values.shape[0]):

for col in range(values.shape[1]):

if isnan(values[row, col]):

values[row, col] = values[row - one_day, col]

# load all data

dataset = read_csv('household_power_consumption.txt', sep=';', header=0, low_memory=False,

infer_datetime_format=True, parse_dates={'datetime':[0,1]}, index_col=['datetime'])

# mark all missing values

dataset.replace('?', nan, inplace=True)

# make dataset numeric

dataset = dataset.astype('float32')

# fill missing

fill_missing(dataset.values)

# add a column for for the remainder of sub metering

values = dataset.values

dataset['sub_metering_4'] = (values[:,0] * 1000 / 60) - (values[:,4] + values[:,5] +

values[:,6])

# save updated dataset

dataset.to_csv('household_power_consumption.csv')

Listing 17.7: Example of preparing the dataset for modeling.

Running the example creates the new file household power consumption.csv that we can
use as the starting point for our modeling project.

17.4 Model Evaluation

In this section, we will consider how we can develop and evaluate predictive models for the
household power dataset. This section is divided into four parts; they are:

1. Problem Framing

2. Evaluation Metric

3. Train and Test Sets

4. Walk-Forward Validation

17.4.1 Problem Framing

There are many ways to harness and explore the household power consumption dataset. In
this tutorial, we will use the data to explore a very specific question; that is: Given recent
power consumption, what is the expected power consumption for the week ahead? This requires
that a predictive model forecast the total active power for each day over the next seven days.
Technically, this framing of the problem is referred to as a multi-step time series forecasting
problem, given the multiple forecast steps. A model that makes use of multiple input variables
may be referred to as a multivariate multi-step time series forecasting model.

A model of this type could be helpful within the household in planning expenditures. It
could also be helpful on the supply side for planning electricity demand for a specific household.
This framing of the dataset also suggests that it would be useful to downsample the per-minute
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observations of power consumption to daily totals. This is not required, but makes sense, given
that we are interested in total power per day. We can achieve this easily using the resample()

function on the Pandas DataFrame. Calling this function with the argument ‘D’ allows the
loaded data indexed by date-time to be grouped by day (see all offset aliases). We can then
calculate the sum of all observations for each day and create a new dataset of daily power
consumption data for each of the eight variables. The complete example is listed below.

# resample minute data to total for each day for the power usage dataset

from pandas import read_csv

# load the new file

dataset = read_csv('household_power_consumption.csv', header=0, infer_datetime_format=True,

parse_dates=['datetime'], index_col=['datetime'])

# resample data to daily

daily_groups = dataset.resample('D')

daily_data = daily_groups.sum()

# summarize

print(daily_data.shape)

print(daily_data.head())

# save

daily_data.to_csv('household_power_consumption_days.csv')

Listing 17.8: Example of resampling the dataset to daily.

Running the example creates a new daily total power consumption dataset and saves the
result into a separate file named household power consumption days.csv. We can use this as
the dataset for fitting and evaluating predictive models for the chosen framing of the problem.

17.4.2 Evaluation Metric

A forecast will be comprised of seven values, one for each day of the week ahead. It is common
with multi-step forecasting problems to evaluate each forecasted time step separately. This is
helpful for a few reasons:

� To comment on the skill at a specific lead time (e.g. +1 day vs +3 days).

� To contrast models based on their skills at different lead times (e.g. models good at +1
day vs models good at days +5).

The units of the total power are kilowatts and it would be useful to have an error metric
that was also in the same units. Both Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE) fit this bill, although RMSE is more commonly used and will be adopted in this
tutorial. Unlike MAE, RMSE is more punishing of forecast errors. The performance metric
for this problem will be the RMSE for each lead time from day 1 to day 7. As a short-cut, it
may be useful to summarize the performance of a model using a single score in order to aide in
model selection. One possible score that could be used would be the RMSE across all forecast
days. The function evaluate forecasts() below will implement this behavior and return the
performance of a model based on multiple seven-day forecasts.

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day
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for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

Listing 17.9: Example of a function for evaluating forecasts.

Running the function will first return the overall RMSE regardless of day, then an array of
RMSE scores for each day.

17.4.3 Train and Test Sets

We will use the first three years of data for training predictive models and the final year for
evaluating models. The data in a given dataset will be divided into standard weeks. These are
weeks that begin on a Sunday and end on a Saturday. This is a realistic and useful way for
using the chosen framing of the model, where the power consumption for the week ahead can
be predicted. It is also helpful with modeling, where models can be used to predict a specific
day (e.g. Wednesday) or the entire sequence.

We will split the data into standard weeks, working backwards from the test dataset. The
final year of the data is in 2010 and the first Sunday for 2010 was January 3rd. The data ends
in mid November 2010 and the closest final Saturday in the data is November 20th. This gives
46 weeks of test data. The first and last rows of daily data for the test dataset are provided
below for confirmation.

2010-01-03,2083.4539999999984,191.61000000000055,350992.12000000034,8703.600000000033,...

...

2010-11-20,2197.006000000004,153.76800000000028,346475.9999999998,9320.20000000002,...

Listing 17.10: First and last rows of the daily dataset.

The daily data starts in late 2006. The first Sunday in the dataset is December 17th, which
is the second row of data. Organizing the data into standard weeks gives 159 full standard
weeks for training a predictive model.

2006-12-17,3390.46,226.0059999999994,345725.32000000024,14398.59999999998,2033.0,4187.0,...

...

2010-01-02,1309.2679999999998,199.54600000000016,352332.8399999997,5489.7999999999865,...

Listing 17.11: Observations that define the boundary of training and test sets.

The function split dataset() below splits the daily data into train and test sets and
organizes each into standard weeks. Specific row offsets are used to split the data using
knowledge of the dataset. The split datasets are then organized into weekly data using the
NumPy split() function.
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# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

Listing 17.12: Example of a function for splitting the data into train and test sets.

We can test this function out by loading the daily dataset and printing the first and last
rows of data from both the train and test sets to confirm they match the expectations above.
The complete code example is listed below.

# split the power usage dataset into standard weeks

from numpy import split

from numpy import array

from pandas import read_csv

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

train, test = split_dataset(dataset.values)

# validate train data

print(train.shape)

print(train[0, 0, 0], train[-1, -1, 0])

# validate test

print(test.shape)

print(test[0, 0, 0], test[-1, -1, 0])

Listing 17.13: Example of splitting the data into train and test sets.

Running the example shows that indeed the train dataset has 159 weeks of data, whereas
the test dataset has 46 weeks. We can see that the total active power for the train and test
dataset for the first and last rows match the data for the specific dates that we defined as the
bounds on the standard weeks for each set.

(159, 7, 8)

3390.46 1309.2679999999998

(46, 7, 8)

2083.4539999999984 2197.006000000004

Listing 17.14: Sample output from splitting the data into train and test sets.
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17.4.4 Walk-Forward Validation

Models will be evaluated using a scheme called walk-forward validation. This is where a model
is required to make a one week prediction, then the actual data for that week is made available
to the model so that it can be used as the basis for making a prediction on the subsequent week.
This is both realistic for how the model may be used in practice and beneficial to the models
allowing them to make use of the best available data. We can demonstrate this below with
separation of input data and output/predicted data.

Input, Predict

[Week1] Week2

[Week1 + Week2] Week3

[Week1 + Week2 + Week3] Week4

...

Listing 17.15: Example of weekly walk-forward validation.

The walk-forward validation approach to evaluating predictive models on this dataset is
implement below, named evaluate model(). The name of a function is provided for the model
as the argument model func. This function is responsible for defining the model, fitting the
model on the training data, and making a one-week forecast. The forecasts made by the model
are then evaluated against the test dataset using the previously defined evaluate forecasts()

function.

# evaluate a single model

def evaluate_model(model_func, train, test):

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = model_func(history)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

predictions = array(predictions)

# evaluate predictions days for each week

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

Listing 17.16: Example of a function for walk-forward validation.

Once we have the evaluation for a model, we can summarize the performance. The function
below named summarize scores() will display the performance of a model as a single line for
easy comparison with other models.

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

Listing 17.17: Example of a function for summarizing model performance.

We now have all of the elements to begin evaluating predictive models on the dataset.
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17.5 Develop Naive Forecast Models

It is important to test naive forecast models on any new prediction problem. The results from
naive models provide a quantitative idea of how difficult the forecast problem is and provide a
baseline performance by which more sophisticated forecast methods can be evaluated. In this
section, we will develop and compare three naive forecast methods for the household power
prediction problem; they are:

1. Daily Persistence Forecast.

2. Weekly Persistent Forecast.

3. Weekly One-Year-Ago Persistent Forecast.

For more information on simple forecast strategies generally, see Chapter 5.

17.5.1 Daily Persistence Forecast

The first naive forecast that we will develop is a daily persistence model. This model takes
the active power from the last day prior to the forecast period (e.g. Saturday) and uses it
as the value of the power for each day in the forecast period (Sunday to Saturday). The
daily persistence() function below implements the daily persistence forecast strategy.

# daily persistence model

def daily_persistence(history):

# get the data for the prior week

last_week = history[-1]

# get the total active power for the last day

value = last_week[-1, 0]

# prepare 7 day forecast

forecast = [value for _ in range(7)]

return forecast

Listing 17.18: Example of a function for a daily persistence model.

17.5.2 Weekly Persistent Forecast

Another good naive forecast when forecasting a standard week is to use the entire prior week
as the forecast for the week ahead. It is based on the idea that next week will be very similar
to this week. The weekly persistence() function below implements the weekly persistence
forecast strategy.

# weekly persistence model

def weekly_persistence(history):

# get the data for the prior week

last_week = history[-1]

return last_week[:, 0]

Listing 17.19: Example of a function for a weekly persistence model.
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17.5.3 Weekly One-Year-Ago Persistent Forecast

Similar to the idea of using last week to forecast next week is the idea of using the same week
last year to predict next week. That is, use the week of observations from 52 weeks ago as the
forecast, based on the idea that next week will be similar to the same week one year ago. The
week one year ago persistence() function below implements the week one year ago forecast
strategy.

# week one year ago persistence model

def week_one_year_ago_persistence(history):

# get the data for the prior week

last_week = history[-52]

return last_week[:, 0]

Listing 17.20: Example of a function for a week one year ago persistence model.

17.5.4 Naive Model Comparison

We can compare each of the forecast strategies using the test harness developed in the previous
section. First, the dataset can be loaded and split into train and test sets.

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

Listing 17.21: Load and split the daily dataset.

Each of the strategies can be stored in a dictionary against a unique name. This name can
be used in printing and in creating a plot of the scores.

# define the names and functions for the models we wish to evaluate

models = dict()

models['daily'] = daily_persistence

models['weekly'] = weekly_persistence

models['week-oya'] = week_one_year_ago_persistence

Listing 17.22: Specify the model functions to evaluate.

We can then enumerate each of the strategies, evaluating it using walk-forward validation,
printing the scores, and adding the scores to a line plot for visual comparison.

# evaluate each model

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

for name, func in models.items():

# evaluate and get scores

score, scores = evaluate_model(func, train, test)

# summarize scores

summarize_scores('daily persistence', score, scores)

# plot scores

pyplot.plot(days, scores, marker='o', label=name)

Listing 17.23: Evaluate and plot the performance of each model.

Tying all of this together, the complete example evaluating the three naive forecast strategies
is listed below.
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# naive forecast strategies for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# evaluate a single model

def evaluate_model(model_func, train, test):

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = model_func(history)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

predictions = array(predictions)
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# evaluate predictions days for each week

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# daily persistence model

def daily_persistence(history):

# get the data for the prior week

last_week = history[-1]

# get the total active power for the last day

value = last_week[-1, 0]

# prepare 7 day forecast

forecast = [value for _ in range(7)]

return forecast

# weekly persistence model

def weekly_persistence(history):

# get the data for the prior week

last_week = history[-1]

return last_week[:, 0]

# week one year ago persistence model

def week_one_year_ago_persistence(history):

# get the data for the prior week

last_week = history[-52]

return last_week[:, 0]

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# define the names and functions for the models we wish to evaluate

models = dict()

models['daily'] = daily_persistence

models['weekly'] = weekly_persistence

models['week-oya'] = week_one_year_ago_persistence

# evaluate each model

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

for name, func in models.items():

# evaluate and get scores

score, scores = evaluate_model(func, train, test)

# summarize scores

summarize_scores(name, score, scores)

# plot scores

pyplot.plot(days, scores, marker='o', label=name)

# show plot

pyplot.legend()

pyplot.show()

Listing 17.24: Example of evaluating and comparing naive forecast methods.

Running the example first prints the total and daily scores for each model. We can see that
the weekly strategy performs better than the daily strategy and that the week one year ago
(week-oya) performs slightly better again. We can see this in both the overall RMSE scores for
each model and in the daily scores for each forecast day. One exception is the forecast error for
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the first day (Sunday) where it appears that the daily persistence model performs better than
the two weekly strategies. We can use the week-oya strategy with an overall RMSE of 465.294
kilowatts as the baseline in performance for more sophisticated models to be considered skillful
on this specific framing of the problem.

daily: [511.886] 452.9, 596.4, 532.1, 490.5, 534.3, 481.5, 482.0

weekly: [469.389] 567.6, 500.3, 411.2, 466.1, 471.9, 358.3, 482.0

week-oya: [465.294] 550.0, 446.7, 398.6, 487.0, 459.3, 313.5, 555.1

Listing 17.25: Sample output from evaluating and comparing naive forecast methods.

A line plot of the daily forecast error is also created. We can see the same observed pattern
of the weekly strategies performing better than the daily strategy in general, except in the
case of the first day. It is surprising (to me) that the week one-year-ago performs better than
using the prior week. I would have expected that the power consumption from last week to be
more relevant. Reviewing all strategies on the same plot suggests possible combinations of the
strategies that may result in even better performance.

Figure 17.1: Line Plot Comparing Naive Forecast Strategies for Household Power Forecasting.

17.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.
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� Additional Naive Strategy. Propose, develop, and evaluate one more naive strategy
for forecasting the next week of power consumption.

� Naive Ensemble Strategy. Develop an ensemble strategy that combines the predictions
from the three proposed naive forecast methods.

� Optimized Direct Persistence Models. Test and find the optimal relative prior day
(e.g. -1 or -7) to use for each forecast day in a direct persistence model.

If you explore any of these extensions, I’d love to know.

17.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� pandas.read csv API.
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

� numpy.split API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html

� pandas.DataFrame.resample API.
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.

html

� Resample Offset Aliases.
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

� sklearn.metrics.mean squared error API.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_

error.html

17.8 Summary

In this tutorial, you discovered how to develop a test harness for the household power consumption
dataset and evaluate three naive forecast strategies that provide a baseline for more sophisticated
algorithms. Specifically, you learned:

� How to load, prepare, and downsample the household power consumption dataset ready
for modeling.

� How to develop metrics, dataset split, and walk-forward validation elements for a robust
test harness for evaluating forecasting models.

� How to develop and evaluate and compare the performance a suite of naive persistence
forecasting methods.

17.8.1 Next

In the next lesson, you will discover how to develop autoregressive models for forecasting the
household power usage problem.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html


Chapter 18

How to Develop ARIMA Models for
Multi-step Energy Usage Forecasting

Given the rise of smart electricity meters and the wide adoption of electricity generation
technology like solar panels, there is a wealth of electricity usage data available. This data
represents a multivariate time series of power-related variables that in turn could be used to
model and even forecast future electricity consumption. Autocorrelation models are very simple
and can provide a fast and effective way to make skillful one-step and multi-step forecasts for
electricity consumption. In this tutorial, you will discover how to develop and evaluate an
autoregression model for multi-step forecasting household power consumption. After completing
this tutorial, you will know:

� How to create and analyze autocorrelation and partial autocorrelation plots for univariate
time series data.

� How to use the findings from autocorrelation plots to configure an autoregression model.

� How to develop and evaluate an autocorrelation model used to make one-week forecasts.

Let’s get started.

18.1 Tutorial Overview

This tutorial is divided into five parts; they are:

1. Problem Description

2. Load and Prepare Dataset

3. Model Evaluation

4. Autocorrelation Analysis

5. Develop an Autoregressive Model

356
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18.2 Problem Description

The Household Power Consumption dataset is a multivariate time series dataset that describes
the electricity consumption for a single household over four years. The data was collected
between December 2006 and November 2010 and observations of power consumption within the
household were collected every minute. It is a multivariate series comprised of seven variables
(besides the date and time); they are:

� global active power: The total active power consumed by the household (kilowatts).

� global reactive power: The total reactive power consumed by the household (kilowatts).

� voltage: Average voltage (volts).

� global intensity: Average current intensity (amps).

� sub metering 1: Active energy for kitchen (watt-hours of active energy).

� sub metering 2: Active energy for laundry (watt-hours of active energy).

� sub metering 3: Active energy for climate control systems (watt-hours of active energy).

Active and reactive energy refer to the technical details of alternative current. A fourth
sub-metering variable can be created by subtracting the sum of three defined sub-metering
variables from the total active energy. This dataset was introduced and analyzed in Chapter 16.
Refer to that chapter for more details if needed.

18.3 Load and Prepare Dataset

We will use the same framework to load and prepare the data as was used for the naive models.
In the interest of brevity, refer to Chapter 17 for the details on how to load and prepare the
dataset for modeling.

18.4 Model Evaluation

We will use the same framework to evaluate models as was used for the naive models. In
the interest of brevity, refer to Chapter 17 for the details on how to develop a framework for
evaluating forecasts for this dataset.

18.5 Autocorrelation Analysis

Statistical correlation summarizes the strength of the relationship between two variables. We
can assume the distribution of each variable fits a Gaussian (bell curve) distribution. If this is
the case, we can use the Pearson’s correlation coefficient to summarize the correlation between
the variables. The Pearson’s correlation coefficient is a number between -1 and 1 that describes
a negative or positive correlation respectively. A value of zero indicates no correlation.
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We can calculate the correlation for time series observations with observations with previous
time steps, called lags. Because the correlation of the time series observations is calculated with
values of the same series at previous times, this is called a serial correlation, or an autocorrelation.
A plot of the autocorrelation of a time series by lag is called the AutoCorrelation Function, or the
acronym ACF. This plot is sometimes called a correlogram, or an autocorrelation plot. A partial
autocorrelation function or PACF is a summary of the relationship between an observation
in a time series with observations at prior time steps with the relationships of intervening
observations removed.

The autocorrelation for an observation and an observation at a prior time step is comprised
of both the direct correlation and indirect correlations. These indirect correlations are a linear
function of the correlation of the observation, with observations at intervening time steps. It is
these indirect correlations that the partial autocorrelation function seeks to remove. Without
going into the math, this is the intuition for the partial autocorrelation. We can calculate auto-
correlation and partial autocorrelation plots using the plot acf() and plot pacf() Statsmodels
functions respectively.

In order to calculate and plot the autocorrelation, we must convert the data into a univariate
time series. Specifically, the observed daily total power consumed. The to series() function
below will take the multivariate data divided into weekly windows and will return a single
univariate time series.

# convert windows of weekly multivariate data into a series of total power

def to_series(data):

# extract just the total power from each week

series = [week[:, 0] for week in data]

# flatten into a single series

series = array(series).flatten()

return series

Listing 18.1: Example of converting weekly data to a series.

We can call this function for the prepared training dataset. First, the daily power consumption
dataset must be loaded.

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

Listing 18.2: Example of loading the prepared dataset.

The dataset must then be split into train and test sets with the standard week window
structure.

# split into train and test

train, test = split_dataset(dataset.values)

Listing 18.3: Example of splitting the loaded dataset into train and test sets.

A univariate time series of daily power consumption can then be extracted from the training
dataset.

# convert training data into a series

series = to_series(train)

Listing 18.4: Example of converting the window-based data into a series.
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We can then create a single figure that contains both an ACF and a PACF plot. The number
of lag time steps can be specified. We will fix this to be one year of daily observations, or 365
days.

# plots

pyplot.figure()

lags = 365

# acf

axis = pyplot.subplot(2, 1, 1)

plot_acf(series, ax=axis, lags=lags)

# pacf

axis = pyplot.subplot(2, 1, 2)

plot_pacf(series, ax=axis, lags=lags)

# show plot

pyplot.show()

Listing 18.5: Example of creating ACF and PACF plots.

The complete example is listed below. We would expect that the power consumed tomorrow
and in the coming week will be dependent upon the power consumed in the prior days. As such,
we would expect to see a strong autocorrelation signal in the ACF and PACF plots.

# acf and pacf plots of total power usage

from numpy import split

from numpy import array

from pandas import read_csv

from matplotlib import pyplot

from statsmodels.graphics.tsaplots import plot_acf

from statsmodels.graphics.tsaplots import plot_pacf

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# convert windows of weekly multivariate data into a series of total power

def to_series(data):

# extract just the total power from each week

series = [week[:, 0] for week in data]

# flatten into a single series

series = array(series).flatten()

return series

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# convert training data into a series

series = to_series(train)

# plots

pyplot.figure()
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lags = 365

# acf

axis = pyplot.subplot(2, 1, 1)

plot_acf(series, ax=axis, lags=lags)

# pacf

axis = pyplot.subplot(2, 1, 2)

plot_pacf(series, ax=axis, lags=lags)

# show plot

pyplot.show()

Listing 18.6: Example of creating ACF and PACF plots from the training dataset.

Running the example creates a single figure with both ACF and PACF plots. The plots are
very dense, and hard to read. Nevertheless, we might be able to see a familiar autoregression
pattern. We might also see some significant lag observations at one year out. Further investigation
may suggest a seasonal autocorrelation component, which would not be a surprising finding.

Figure 18.1: ACF and PACF plots for the univariate series of power consumption.

We can zoom in the plot and change the number of lag observations from 365 to 50.

lags = 50

Listing 18.7: Example of changing the number of lag observations in the plots.
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Re-running the code example with this change results is a zoomed-in version of the plots
with much less clutter. We can clearly see a familiar autoregression pattern across the two plots.
This pattern is comprised of two elements:

� ACF: A large number of significant lag observations that slowly degrade as the lag
increases.

� PACF: A few significant lag observations that abruptly drop as the lag increases.

The ACF plot indicates that there is a strong autocorrelation component, whereas the PACF
plot indicates that this component is distinct for the first approximately seven lag observations.
This suggests that a good starting model would be an AR(7); that is an autoregression model
with seven lag observations used as input.

Figure 18.2: Zoomed in ACF and PACF plots for the univariate series of power consumption.

18.6 Develop an Autoregressive Model

We can develop an autoregression model for univariate series of daily power consumption. For
more information on autoregressive models see Chapter 5. The Statsmodels library provides
multiple ways of developing an AR model, such as using the AR, ARMA, ARIMA, and SARIMAX
classes. For more information on developing SARIMAX models with the Statsmodels library,
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see Chapter 13. We will use the ARIMA implementation as it allows for easy expandability into
differencing and moving average. First, the history data comprised of weeks of prior observations
must be converted into a univariate time series of daily power consumption. We can use the
to series() function developed in the previous section.

# convert history into a univariate series

series = to_series(history)

Listing 18.8: Example of converting the window-based history data into a series.

Next, an ARIMA model can be defined by passing arguments to the constructor of the
ARIMA class. We will specify an AR(7) model, which in ARIMA notation is ARIMA(7,0,0).

# define the model

model = ARIMA(series, order=(7,0,0))

Listing 18.9: Example of defining an ARIMA model.

Next, the model can be fit on the training data. We will use the defaults and disable all
debugging information during the fit by setting disp=False.

# fit the model

model_fit = model.fit(disp=False)

Listing 18.10: Example of fitting an ARIMA model.

Now that the model has been fit, we can make a prediction. A prediction can be made by
calling the predict() function and passing it either an interval of dates or indices relative to
the training data. We will use indices starting with the first time step beyond the training data
and extending it six more days, giving a total of a seven day forecast period beyond the training
dataset.

# make forecast

yhat = model_fit.predict(len(series), len(series)+6)

Listing 18.11: Example of making a one-week forecast with an ARIMA model.

We can wrap all of this up into a function below named arima forecast() that takes the
history and returns a one week forecast.

# arima forecast

def arima_forecast(history):

# convert history into a univariate series

series = to_series(history)

# define the model

model = ARIMA(series, order=(7,0,0))

# fit the model

model_fit = model.fit(disp=False)

# make forecast

yhat = model_fit.predict(len(series), len(series)+6)

return yhat

Listing 18.12: Example of a function for fitting and forecasting with an ARIMA model.

This function can be used directly in the test harness described previously. The complete
example is listed below.
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# arima forecast for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from statsmodels.tsa.arima_model import ARIMA

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# evaluate a single model

def evaluate_model(model_func, train, test):

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = model_func(history)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])
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predictions = array(predictions)

# evaluate predictions days for each week

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# convert windows of weekly multivariate data into a series of total power

def to_series(data):

# extract just the total power from each week

series = [week[:, 0] for week in data]

# flatten into a single series

series = array(series).flatten()

return series

# arima forecast

def arima_forecast(history):

# convert history into a univariate series

series = to_series(history)

# define the model

model = ARIMA(series, order=(7,0,0))

# fit the model

model_fit = model.fit(disp=False)

# make forecast

yhat = model_fit.predict(len(series), len(series)+6)

return yhat

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# define the names and functions for the models we wish to evaluate

models = dict()

models['arima'] = arima_forecast

# evaluate each model

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

for name, func in models.items():

# evaluate and get scores

score, scores = evaluate_model(func, train, test)

# summarize scores

summarize_scores(name, score, scores)

# plot scores

pyplot.plot(days, scores, marker='o', label=name)

# show plot

pyplot.legend()

pyplot.show()

Listing 18.13: Example of evaluating an ARIMA model for multi-step power consumption
forecasting.

Running the example first prints the performance of the AR(7) model on the test dataset.
We can see that the model achieves the overall RMSE of about 381 kilowatts. This model has
skill when compared to naive forecast models, such as a model that forecasts the week ahead
using observations from the same time one year ago that achieved an overall RMSE of about
465 kilowatts.

arima: [381.636] 393.8, 398.9, 357.0, 377.2, 393.9, 306.1, 432.2
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Listing 18.14: Sample output from evaluating an ARIMA model for multi-step power
consumption forecasting.

A line plot of the forecast is also created, showing the RMSE in kilowatts for each of the
seven lead times of the forecast. We can see an interesting pattern. We might expect that
earlier lead times are easier to forecast than later lead times, as the error at each successive
lead time compounds. Instead, we see that Friday (lead time +6) is the easiest to forecast and
Saturday (lead time +7) is the most challenging to forecast. We can also see that the remaining
lead times all have a similar error in the mid- to high-300 kilowatt range.

Figure 18.3: Line plot of ARIMA forecast error for each forecasted lead times.

18.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Tune ARIMA. The parameters of the ARIMA model were not tuned. Explore or search
a suite of ARIMA parameters (q, d, p) to see if performance can be further improved.

� Explore Seasonal AR. Explore whether the performance of the AR model can be
improved by including seasonal autoregression elements. This may require the use of a
SARIMA model.
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� Explore ETS. Explore whether better results may be achieved by using an ETS model
instead of an ARIMA model.

� Explore Data Preparation. The model was fit on the raw data directly. Explore
whether standardization or normalization or even power transforms can further improve
the skill of the AR model.

If you explore any of these extensions, I’d love to know.

18.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� statsmodels.graphics.tsaplots.plot acf API.
http://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_

acf.html

� statsmodels.graphics.tsaplots.plot pacf API.
http://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_

pacf.html

� statsmodels.tsa.arima model.ARIMA API.
http://www.statsmodels.org/dev/generated/statsmodels.tsa.arima_model.ARIMA.

html

� statsmodels.tsa.arima model.ARIMAResults API.
http://www.statsmodels.org/dev/generated/statsmodels.tsa.arima_model.ARIMAResults.

html

18.9 Summary

In this tutorial, you discovered how to develop and evaluate an autoregression model for
multi-step forecasting household power consumption. Specifically, you learned:

� How to create and analyze autocorrelation and partial autocorrelation plots for univariate
time series data.

� How to use the findings from autocorrelation plots to configure an autoregression model.

� How to develop and evaluate an autocorrelation model used to make one-week forecasts.

18.9.1 Next

In the next lesson, you will discover how to develop Convolutional Neural Network models for
forecasting the household power usage problem.

http://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_acf.html
http://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_acf.html
http://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_pacf.html
http://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_pacf.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.arima_model.ARIMA.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.arima_model.ARIMA.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.arima_model.ARIMAResults.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.arima_model.ARIMAResults.html


Chapter 19

How to Develop CNNs for Multi-step
Energy Usage Forecasting

Given the rise of smart electricity meters and the wide adoption of electricity generation
technology like solar panels, there is a wealth of electricity usage data available. This data
represents a multivariate time series of power-related variables that in turn could be used
to model and even forecast future electricity consumption. Unlike other machine learning
algorithms, convolutional neural networks are capable of automatically learning features from
sequence data, support multiple-variate data, and can directly output a vector for multi-step
forecasting. As such, one-dimensional CNNs have been demonstrated to perform well and even
achieve state-of-the-art results on challenging sequence prediction problems. In this tutorial,
you will discover how to develop 1D convolutional neural networks for multi-step time series
forecasting. After completing this tutorial, you will know:

� How to develop a CNN for multi-step time series forecasting model for univariate data.

� How to develop a multi-channel multi-step time series forecasting model for multivariate
data.

� How to develop a multi-headed multi-step time series forecasting model for multivariate
data.

Let’s get started.

19.1 Tutorial Overview

This tutorial is divided into seven parts; they are:

1. Problem Description

2. Load and Prepare Dataset

3. Model Evaluation

4. CNNs for Multi-step Forecasting

5. Univariate CNN Model

367
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6. Multi-channel CNN Model

7. Multi-headed CNN Model

19.2 Problem Description

The Household Power Consumption dataset is a multivariate time series dataset that describes
the electricity consumption for a single household over four years. The data was collected
between December 2006 and November 2010 and observations of power consumption within the
household were collected every minute. It is a multivariate series comprised of seven variables
(besides the date and time); they are:

� global active power: The total active power consumed by the household (kilowatts).

� global reactive power: The total reactive power consumed by the household (kilowatts).

� voltage: Average voltage (volts).

� global intensity: Average current intensity (amps).

� sub metering 1: Active energy for kitchen (watt-hours of active energy).

� sub metering 2: Active energy for laundry (watt-hours of active energy).

� sub metering 3: Active energy for climate control systems (watt-hours of active energy).

Active and reactive energy refer to the technical details of alternative current. A fourth
sub-metering variable can be created by subtracting the sum of three defined sub-metering
variables from the total active energy. This dataset was introduced and analyzed in Chapter 16.
Refer to that chapter for more details if needed.

19.3 Load and Prepare Dataset

We will use the same framework to load and prepare the data as was used for the naive models.
In the interest of brevity, refer to Chapter 17 for the details on how to load and prepare the
dataset for modeling.

19.4 Model Evaluation

We will use the same framework to evaluate models as was used for the naive models. In
the interest of brevity, refer to Chapter 17 for the details on how to develop a framework for
evaluating forecasts for this dataset. We must update the framework for model evaluation,
specifically the walk-forward validation method used to fit a CNN model and make a forecast.
The development of the new walk-forward validation framework follows in the next subsection.
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19.4.1 Walk-Forward Validation

Models will be evaluated using a scheme called walk-forward validation. This is where a model
is required to make a one week prediction, then the actual data for that week is made available
to the model so that it can be used as the basis for making a prediction on the subsequent week.
This is both realistic for how the model may be used in practice and beneficial to the models,
allowing them to make use of the best available data. We can demonstrate this below with
separation of input data and output/predicted data.

Input, Predict

[Week1] Week2

[Week1 + Week2] Week3

[Week1 + Week2 + Week3] Week4

...

Listing 19.1: Example of weekly walk-forward validation.

The walk-forward validation approach to evaluating predictive models on this dataset is
provided below, named evaluate model(). The train and test datasets in standard-week format
are provided to the function as arguments. An additional argument, n input, is provided that
is used to define the number of prior observations that the model will use as input in order to
make a prediction. Two new functions are called: one to build a model from the training data
called build model() and another that uses the model to make forecasts for each new standard
week, called forecast(). These will be covered in subsequent sections.

We are working with neural networks and as such they are generally slow to train but fast to
evaluate. This means that the preferred usage of the models is to build them once on historical
data and to use them to forecast each step of the walk-forward validation. The models are static
(i.e. not updated) during their evaluation. This is different to other models that are faster to
train, where a model may be re-fit or updated each step of the walk-forward validation as new
data is made available. With sufficient resources, it is possible to use neural networks this way,
but we will not in this tutorial. The complete evaluate model() function is listed below.

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

Listing 19.2: Example of a function for walk-forward validation.
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Once we have the evaluation for a model, we can summarize the performance. The function
below, named summarize scores(), will display the performance of a model as a single line for
easy comparison with other models.

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

Listing 19.3: Example of a function for summarizing model performance.

We now have all of the elements to begin evaluating predictive models on the dataset.

19.5 CNNs for Multi-step Forecasting

Convolutional Neural Network models, or CNNs for short, can be used for multi-step time series
forecasting. For more details on the use of CNNs for multi-step forecasting, see Chapter 8.
CNNs can be used in either a recursive or direct forecast strategy, where the model makes
one-step predictions and outputs are fed as inputs for subsequent predictions, and where one
model is developed for each time step to be predicted. Alternately, CNNs can be used to predict
the entire output sequence as a one-step prediction of the entire vector. This is a general benefit
of feedforward neural networks. An important secondary benefit of using CNNs is that they
can support multiple 1D inputs in order to make a prediction. This is useful if the multi-step
output sequence is a function of more than one input sequence. This can be achieved using two
different model configurations.

� Multiple Input Channels. This is where each input sequence is read as a separate
channel, like the different channels of an image (e.g. red, green and blue).

� Multiple Input Heads. This is where each input sequence is read by a different CNN
submodel and the internal representations are combined before being interpreted and used
to make a prediction.

In this tutorial, we will explore how to develop three different types of CNN models for
multi-step time series forecasting; they are:

� A CNN for multi-step time series forecasting with univariate input data.

� A CNN for multi-step time series forecasting with multivariate input data via channels.

� A CNN for multi-step time series forecasting with multivariate input data via submodels.

The models will be developed and demonstrated on the household power prediction problem.
A model is considered skillful if it achieves performance better than a naive model, which is an
overall RMSE of about 465 kilowatts across a seven day forecast (for more details of the naive
model, see Chapter 17). We will not focus on the tuning of these models to achieve optimal
performance; instead we will sill stop short at skillful models as compared to a naive forecast.
The chosen structures and hyperparameters are chosen with a little trial and error. Given the
stochastic nature of the models, it is good practice to evaluate a given model multiple times
and report the mean performance on a test dataset. In the interest of brevity and keeping the
code simple, we will instead present single-runs of models in this tutorial.
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19.6 Univariate CNN Model

In this section, we will develop a convolutional neural network for multi-step time series
forecasting using only the univariate sequence of daily power consumption. Specifically, the
framing of the problem is: Given some number of prior days of total daily power consumption,
predict the next standard week of daily power consumption. The number of prior days used as
input defines the one-dimensional (1D) subsequence of data that the CNN will read and learn
to extract features. Some ideas on the size and nature of this input include:

� All prior days, up to years worth of data.

� The prior seven days.

� The prior two weeks.

� The prior one month.

� The prior one year.

� The prior week and the week to be predicted from one year ago.

There is no right answer; instead, each approach and more can be tested and the performance
of the model can be used to choose the nature of the input that results in the best model
performance. These choices define a few things about the implementation, such as:

� How the training data must be prepared in order to fit the model.

� How the test data must be prepared in order to evaluate the model.

� How to use the model to make predictions with a final model in the future.

A good starting point would be to use the prior seven days. A 1D CNN model expects data
to have the shape of: [samples, timesteps, features]. One sample will be comprised of
seven time steps with one feature for the seven days of total daily power consumed. The training
dataset has 159 weeks of data, so the shape of the training dataset would be: [159, 7, 1].

This is a good start. The data in this format would use the prior standard week to predict
the next standard week. A problem is that 159 instances is not a lot for a neural network. A
way to create a lot more training data is to change the problem during training to predict the
next seven days given the prior seven days, regardless of the standard week. This only impacts
the training data, the test problem remains the same: predict the daily power consumption for
the next standard week given the prior standard week. This will require a little preparation
of the training data. The training data is provided in standard weeks with eight variables,
specifically in the shape [159, 7, 8]. The first step is to flatten the data so that we have eight
time series sequences.

# flatten data

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

Listing 19.4: Example of flattened weekly data.

We then need to iterate over the time steps and divide the data into overlapping windows;
each iteration moves along one time step and predicts the subsequent seven days. For example:
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Input, Output

[d01, d02, d03, d04, d05, d06, d07], [d08, d09, d10, d11, d12, d13, d14]

[d02, d03, d04, d05, d06, d07, d08], [d09, d10, d11, d12, d13, d14, d15]

...

Listing 19.5: Example of overlapping weekly data.

We can do this by keeping track of start and end indexes for the inputs and outputs as we
iterate across the length of the flattened data in terms of time steps. We can also do this in a
way where the number of inputs and outputs are parameterized (e.g. n input, n out) so that
you can experiment with different values or adapt it for your own problem. Below is a function
named to supervised() that takes a list of weeks (history) and the number of time steps to
use as inputs and outputs and returns the data in the overlapping moving window format.

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

X.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

Listing 19.6: Example of a function for creating overlapping windows of data.

When we run this function on the entire training dataset, we transform 159 samples into
1,099; specifically, the transformed dataset has the shapes X=[1099, 7, 1] and y=[1099, 7].
Next, we can define and fit the CNN model on the training data. This multi-step time series
forecasting problem is an autoregression. That means it is likely best modeled where that the
next seven days is some function of observations at prior time steps. This and the relatively
small amount of data means that a small model is required. We will use a model with one
convolution layer with 16 filters and a kernel size of 3. This means that the input sequence
of seven days will be read with a convolutional operation three time steps at a time and this
operation will be performed 16 times. A pooling layer will reduce these feature maps by 1

4
their

size before the internal representation is flattened to one long vector. This is then interpreted
by a fully connected layer before the output layer predicts the next seven days in the sequence.

We will use the mean squared error loss function as it is a good match for our chosen error
metric of RMSE. We will use the efficient Adam implementation of stochastic gradient descent
and fit the model for 20 epochs with a batch size of 4. The small batch size and the stochastic
nature of the algorithm means that the same model will learn a slightly different mapping of
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inputs to outputs each time it is trained. This means results may vary when the model is
evaluated. You can try running the model multiple times and calculating an average of model
performance. The build model() below prepares the training data, defines the model, and fits
the model on the training data, returning the fit model ready for making predictions.

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 20, 4

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# define model

model = Sequential()

model.add(Conv1D(filters=16, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(10, activation='relu'))

model.add(Dense(n_outputs))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

Listing 19.7: Example of a function for fitting a CNN model.

Now that we know how to fit the model, we can look at how the model can be used to make
a prediction. Generally, the model expects data to have the same three dimensional shape when
making a prediction. In this case, the expected shape of an input pattern is one sample, seven
days of one feature for the daily power consumed: [1, 7, 1]. Data must have this shape when
making predictions for the test set and when a final model is being used to make predictions in
the future. If you change the number of input days to 14, then the shape of the training data
and the shape of new samples when making predictions must be changed accordingly to have 14
time steps. It is a modeling choice that you must carry forward when using the model.

We are using walk-forward validation to evaluate the model as described in the previous
section. This means that we have the observations available for the prior week in order to
predict the coming week. These are collected into an array of standard weeks, called history. In
order to predict the next standard week, we need to retrieve the last days of observations. As
with the training data, we must first flatten the history data to remove the weekly structure so
that we end up with eight parallel time series.

# flatten data

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

Listing 19.8: Example of flattened weekly data.

Next, we need to retrieve the last seven days of daily total power consumed (feature number
0). We will parameterize as we did for the training data so that the number of prior days used
as input by the model can be modified in the future.

# retrieve last observations for input data

input_x = data[-n_input:, 0]

Listing 19.9: Example of retrieving the required input data.
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Next, we reshape the input into the expected three-dimensional structure.

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

Listing 19.10: Example of reshaping input data.

We then make a prediction using the fit model and the input data and retrieve the vector of
seven days of output.

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

Listing 19.11: Example of making a single one-week prediction.

The forecast() function below implements this and takes as arguments the model fit on
the training dataset, the history of data observed so far, and the number of inputs time steps
expected by the model.

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

Listing 19.12: Example of a function for making a multi-step forecast with a CNN model.

That’s it; we now have everything we need to make multi-step time series forecasts with
a CNN model on the daily total power consumed univariate dataset. We can tie all of this
together. The complete example is listed below.

# univariate multi-step cnn for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks
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train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

X.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters
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verbose, epochs, batch_size = 0, 20, 4

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# define model

model = Sequential()

model.add(Conv1D(filters=16, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(10, activation='relu'))

model.add(Dense(n_outputs))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# evaluate model and get scores
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n_input = 7

score, scores = evaluate_model(train, test, n_input)

# summarize scores

summarize_scores('cnn', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='cnn')

pyplot.show()

Listing 19.13: Example of evaluating a univariate CNN model for multi-step forecasting.

Running the example fits and evaluates the model, printing the overall RMSE across all
seven days, and the per-day RMSE for each lead time. We can see that in this case, the model
was skillful as compared to a naive forecast, achieving an overall RMSE of about 404 kilowatts,
less than 465 kilowatts achieved by a naive model.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

cnn: [404.411] 436.1, 400.6, 346.2, 388.2, 405.5, 326.0, 502.9

Listing 19.14: Sample output from evaluating a univariate CNN model for multi-step forecasting.

A plot of the daily RMSE is also created. The plot shows that perhaps Tuesdays and Fridays
are easier days to forecast than the other days and that perhaps Saturday at the end of the
standard week is the hardest day to forecast.
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Figure 19.1: Line Plot of RMSE per Day for Univariate CNN with 7-day Inputs.

We can increase the number of prior days to use as input from seven to 14 by changing the
n input variable.

# evaluate model and get scores

n_input = 14

Listing 19.15: Example of changing the size of the input for making a forecast.

Re-running the example with this change first prints a summary of the performance of the
model. In this case, we can see a further drop in the overall RMSE, suggesting that further tuning
of the input size and perhaps the kernel size of the model may result in better performance.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

cnn: [396.497] 392.2, 412.8, 384.0, 389.0, 387.3, 381.0, 427.1

Listing 19.16: Sample output from evaluating the updated CNN model for multi-step forecasting.

Comparing the per-day RMSE scores, we see some are better and some are worse than using
seventh inputs. This may suggest a benefit in using the two different sized inputs in some way,
such as an ensemble of the two approaches or perhaps a single model (e.g. a multi-headed
model) that reads the training data in different ways.
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Figure 19.2: Line Plot of RMSE per Day for Univariate CNN with 14-day Inputs.

19.7 Multi-channel CNN Model

In this section, we will update the CNN developed in the previous section to use each of the
eight time series variables to predict the next standard week of daily total power consumption.
We will do this by providing each one-dimensional time series to the model as a separate channel
of input. The CNN will then use a separate kernel and read each input sequence onto a separate
set of filter maps, essentially learning features from each input time series variable. This is
helpful for those problems where the output sequence is some function of the observations
at prior time steps from multiple different features, not just (or including) the feature being
forecasted. It is unclear whether this is the case in the power consumption problem, but we can
explore it nonetheless. First, we must update the preparation of the training data to include all
of the eight features, not just the one total daily power consumed. It requires a single line:

# use all variables in input samples

X.append(data[in_start:in_end, :])

Listing 19.17: Example of data preparation using all data variables.

The complete to supervised() function with this change is listed below.

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):
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# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

X.append(data[in_start:in_end, :])

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

Listing 19.18: Example of a function for creating overlapping windows of data with all variables.

We also must update the function used to make forecasts with the fit model to use all eight
features from the prior time steps. Again, another small change:

# retrieve last observations for input data

input_x = data[-n_input:, :]

# reshape into [1, n_input, n]

input_x = input_x.reshape((1, input_x.shape[0], input_x.shape[1]))

Listing 19.19: Example of using all variables as input when making a forecast.

The complete forecast() with this change is listed below:

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, :]

# reshape into [1, n_input, n]

input_x = input_x.reshape((1, input_x.shape[0], input_x.shape[1]))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

Listing 19.20: Example of a function for making a multi-step forecast with a CNN model and
all input variables.

We will use 14 days of prior observations across eight of the input variables as we did in the
final section of the prior section that resulted in slightly better performance.

# evaluate model and get scores

n_input = 14

Listing 19.21: Example of using two weeks of data as input.



19.7. Multi-channel CNN Model 381

Finally, the model used in the previous section does not perform well on this new framing
of the problem. The increase in the amount of data requires a larger and more sophisticated
model that is trained for longer. With a little trial and error, one model that performs well uses
two convolutional layers with 32 filter maps followed by pooling, then another convolutional
layer with 16 feature maps and pooling. The fully connected layer that interprets the features
is increased to 100 nodes and the model is fit for 70 epochs with a batch size of 16 samples.
The updated build model() function that defines and fits the model on the training dataset is
listed below.

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 70, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# define model

model = Sequential()

model.add(Conv1D(filters=32, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=32, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Conv1D(filters=16, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

Listing 19.22: Example of a function for fitting a multi-channel CNN model.

We now have all of the elements required to develop a multi-channel CNN for multivariate
input data to make multi-step time series forecasts. The complete example is listed below.

# multichannel multi-step cnn for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))
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test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

X.append(data[in_start:in_end, :])

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 70, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# define model

model = Sequential()

model.add(Conv1D(filters=32, kernel_size=3, activation='relu',
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input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=32, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Conv1D(filters=16, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, :]

# reshape into [1, n_input, n]

input_x = input_x.reshape((1, input_x.shape[0], input_x.shape[1]))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# evaluate model and get scores

n_input = 14

score, scores = evaluate_model(train, test, n_input)
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# summarize scores

summarize_scores('cnn', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='cnn')

pyplot.show()

Listing 19.23: Example of evaluating a multi-channel CNN model for multi-step forecasting.

Running the example fits and evaluates the model, printing the overall RMSE across all
seven days, and the per-day RMSE for each lead time. We can see that in this case, the use of
all eight input variables does result in another small drop in the overall RMSE score.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

cnn: [385.711] 422.2, 363.5, 349.8, 393.1, 357.1, 318.8, 474.3

Listing 19.24: Sample output from evaluating a multi-channel CNN model for multi-step
forecasting.

For the daily RMSE scores, we do see that some are better and some are worse than the
univariate CNN from the previous section. The final day, Saturday, remains a challenging day
to forecast, and Friday an easy day to forecast. There may be some benefit in designing models
to focus specifically on reducing the error of the harder to forecast days. It may be interesting
to see if the variance across daily scores could be further reduced with a tuned model or perhaps
an ensemble of multiple different models. It may also be interesting to compare the performance
for a model that uses seven or even 21 days of input data to see if further gains can be made.
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Figure 19.3: Line Plot of RMSE per Day for a Multi-channel CNN with 14-day Inputs.

19.8 Multi-headed CNN Model

We can further extend the CNN model to have a separate sub-CNN model or head for each input
variable, which we can refer to as a multi-headed CNN model. This requires a modification to
the preparation of the model, and in turn, modification to the preparation of the training and
test datasets. Starting with the model, we must define a separate CNN model for each of the
eight input variables. The configuration of the model, including the number of layers and their
hyperparameters, were also modified to better suit the new approach. The new configuration is
not optimal and was found with a little trial and error. The multi-headed model is specified
using the more flexible functional API for defining Keras models.

We can loop over each variable and create a submodel that takes a one-dimensional sequence
of 14 days of data and outputs a flat vector containing a summary of the learned features from
the sequence. Each of these vectors can be merged via concatenation to make one very long
vector that is then interpreted by some fully connected layers before a prediction is made. As
we build up the submodels, we keep track of the input layers and flatten layers in lists. This is
so that we can specify the inputs in the definition of the model object and use the list of flatten
layers in the merge layer.

# create a channel for each variable

in_layers, out_layers = list(), list()
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for i in range(n_features):

inputs = Input(shape=(n_timesteps,1))

conv1 = Conv1D(filters=32, kernel_size=3, activation='relu')(inputs)

conv2 = Conv1D(filters=32, kernel_size=3, activation='relu')(conv1)

pool1 = MaxPooling1D(pool_size=2)(conv2)

flat = Flatten()(pool1)

# store layers

in_layers.append(inputs)

out_layers.append(flat)

# merge heads

merged = concatenate(out_layers)

# interpretation

dense1 = Dense(200, activation='relu')(merged)

dense2 = Dense(100, activation='relu')(dense1)

outputs = Dense(n_outputs)(dense2)

model = Model(inputs=in_layers, outputs=outputs)

# compile model

model.compile(loss='mse', optimizer='adam')

Listing 19.25: Example of defining a multi-headed CNN model.

When the model is used, it will require eight arrays as input: one for each of the submodels.
This is required when training the model, when evaluating the model, and when making
predictions with a final model. We can achieve this by creating a list of 3D arrays, where each
3D array contains [samples, timesteps, 1], with one feature. We can prepare the training
dataset in this format as follows:

# define list of input data

input_data = [train_x[:,:,i].reshape((train_x.shape[0],n_timesteps,1)) for i in

range(n_features)]

Listing 19.26: Example of defining input where each variable is a separate array.

The updated build model() function with these changes is listed below.

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 25, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# create a channel for each variable

in_layers, out_layers = list(), list()

for i in range(n_features):

inputs = Input(shape=(n_timesteps,1))

conv1 = Conv1D(filters=32, kernel_size=3, activation='relu')(inputs)

conv2 = Conv1D(filters=32, kernel_size=3, activation='relu')(conv1)

pool1 = MaxPooling1D(pool_size=2)(conv2)

flat = Flatten()(pool1)

# store layers

in_layers.append(inputs)

out_layers.append(flat)

# merge heads

merged = concatenate(out_layers)

# interpretation

dense1 = Dense(200, activation='relu')(merged)
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dense2 = Dense(100, activation='relu')(dense1)

outputs = Dense(n_outputs)(dense2)

model = Model(inputs=in_layers, outputs=outputs)

# compile model

model.compile(loss='mse', optimizer='adam')

# plot the model

plot_model(model, show_shapes=True, to_file='multiheaded_cnn.png')

# fit network

input_data = [train_x[:,:,i].reshape((train_x.shape[0],n_timesteps,1)) for i in

range(n_features)]

model.fit(input_data, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

Listing 19.27: Example of a function to define and fit a multi-headed CNN model.

When the model is built, a diagram of the structure of the model is created and saved to
file. The structure of the network looks as follows.

Note: the call to plot model() requires that pygraphviz and pydot are installed. If this is a
problem, you can comment out this line.

Figure 19.4: Structure of the Multi Headed Convolutional Neural Network.

Next, we can update the preparation of input samples when making a prediction for the
test dataset. We must perform the same change, where an input array of [1, 14, 8] must be
transformed into a list of eight 3D arrays each with [1, 14, 1].

# input for making a prediction

input_x = [input_x[:,i].reshape((1,input_x.shape[0],1)) for i in range(input_x.shape[1])]

Listing 19.28: Example of defining input where each variable is a separate array.

The forecast() function with this change is listed below.

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data



19.8. Multi-headed CNN Model 388

input_x = data[-n_input:, :]

# reshape into n input arrays

input_x = [input_x[:,i].reshape((1,input_x.shape[0],1)) for i in range(input_x.shape[1])]

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

Listing 19.29: Example of a function for making a forecast with a multi-headed CNN model.

That’s it. We can tie all of this together; the complete example is listed below.

# multi headed multi-step cnn for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.utils.vis_utils import plot_model

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.models import Model

from keras.layers import Input

from keras.layers.merge import concatenate

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores
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# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

X.append(data[in_start:in_end, :])

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

# plot training history

def plot_history(history):

# plot loss

pyplot.subplot(2, 1, 1)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.title('loss', y=0, loc='center')

pyplot.legend()

# plot rmse

pyplot.subplot(2, 1, 2)

pyplot.plot(history.history['rmse'], label='train')

pyplot.plot(history.history['val_rmse'], label='test')

pyplot.title('rmse', y=0, loc='center')

pyplot.legend()

pyplot.show()

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 25, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# create a channel for each variable

in_layers, out_layers = list(), list()

for _ in range(n_features):

inputs = Input(shape=(n_timesteps,1))

conv1 = Conv1D(filters=32, kernel_size=3, activation='relu')(inputs)

conv2 = Conv1D(filters=32, kernel_size=3, activation='relu')(conv1)

pool1 = MaxPooling1D(pool_size=2)(conv2)

flat = Flatten()(pool1)

# store layers
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in_layers.append(inputs)

out_layers.append(flat)

# merge heads

merged = concatenate(out_layers)

# interpretation

dense1 = Dense(200, activation='relu')(merged)

dense2 = Dense(100, activation='relu')(dense1)

outputs = Dense(n_outputs)(dense2)

model = Model(inputs=in_layers, outputs=outputs)

# compile model

model.compile(loss='mse', optimizer='adam')

# plot the model

plot_model(model, show_shapes=True, to_file='multiheaded_cnn.png')

# fit network

input_data = [train_x[:,:,i].reshape((train_x.shape[0],n_timesteps,1)) for i in

range(n_features)]

model.fit(input_data, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, :]

# reshape into n input arrays

input_x = [input_x[:,i].reshape((1,input_x.shape[0],1)) for i in range(input_x.shape[1])]

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,
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infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# evaluate model and get scores

n_input = 14

score, scores = evaluate_model(train, test, n_input)

# summarize scores

summarize_scores('cnn', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='cnn')

pyplot.show()

Listing 19.30: Example of evaluating a multi-headed CNN model for multi-step forecasting.

Running the example fits and evaluates the model, printing the overall RMSE across all
seven days, and the per-day RMSE for each lead time. We can see that in this case, the overall
RMSE is skillful compared to a naive forecast, but with the chosen configuration may not
perform better than the multi-channel model in the previous section.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

cnn: [396.116] 414.5, 385.5, 377.2, 412.1, 371.1, 380.6, 428.1

Listing 19.31: Sample output from evaluating a multi-headed CNN model for multi-step
forecasting.

We can also see a different, more pronounced profile for the daily RMSE scores where perhaps
Mon-Tue and Thu-Fri are easier for the model to predict than the other forecast days. These
results may be useful when combined with another forecast model. It may be interesting to
explore alternate methods in the architecture for merging the output of each submodel.
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Figure 19.5: Line Plot of RMSE per Day for a Multi-head CNN with 14-day Inputs.

19.9 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Size of Input. Explore more or fewer numbers of days used as input for the model, such
as three days, 21 days, 30 days and more.

� Model Tuning. Tune the structure and hyperparameters for a model and further lift
model performance on average.

� Data Scaling. Explore whether data scaling, such as standardization and normalization,
can be used to improve the performance of any of the CNN models.

� Learning Diagnostics. Use diagnostics such as learning curves for the train and valida-
tion loss and mean squared error to help tune the structure and hyperparameters of a
CNN model.

� Vary Kernel Size. Combine the multi-channel CNN with the multi-headed CNN and
use a different kernel size for each head to see if this configuration can further improve
performance.

If you explore any of these extensions, I’d love to know.
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19.10 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Getting started with the Keras functional API.
https://keras.io/getting-started/functional-api-guide/

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Pooling Layers API.
https://keras.io/layers/pooling/

19.11 Summary

In this tutorial, you discovered how to develop 1D convolutional neural networks for multi-step
time series forecasting. Specifically, you learned:

� How to develop a CNN for multi-step time series forecasting model for univariate data.

� How to develop a multi-channel multi-step time series forecasting model for multivariate
data.

� How to develop a multi-headed multi-step time series forecasting model for multivariate
data.

19.11.1 Next

In the next lesson, you will discover how to develop Recurrent Neural Network models for
forecasting the household power usage problem.

https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/


Chapter 20

How to Develop LSTMs for Multi-step
Energy Usage Forecasting

Given the rise of smart electricity meters and the wide adoption of electricity generation
technology like solar panels, there is a wealth of electricity usage data available. This data
represents a multivariate time series of power-related variables that in turn could be used
to model and even forecast future electricity consumption. Unlike other machine learning
algorithms, long short-term memory recurrent neural networks are capable of automatically
learning features from sequence data, support multiple-variate data, and can output a variable
length sequences that can be used for multi-step forecasting. In this tutorial, you will discover
how to develop long short-term memory recurrent neural networks for multi-step time series
forecasting of household power consumption. After completing this tutorial, you will know:

� How to develop and evaluate Univariate and multivariate Encoder-Decoder LSTMs for
multi-step time series forecasting.

� How to develop and evaluate an CNN-LSTM Encoder-Decoder model for multi-step time
series forecasting.

� How to develop and evaluate a ConvLSTM Encoder-Decoder model for multi-step time
series forecasting.

Let’s get started.

20.1 Tutorial Overview

This tutorial is divided into nine parts; they are:

1. Problem Description

2. Load and Prepare Dataset

3. Model Evaluation

4. LSTMs for Multi-step Forecasting

5. Univariate Input and Vector Output

394
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6. Encoder-Decoder LSTM With Univariate Input

7. Encoder-Decoder LSTM With Multivariate Input

8. CNN-LSTM Encoder-Decoder With Univariate Input

9. ConvLSTM Encoder-Decoder With Univariate Input

20.2 Problem Description

The Household Power Consumption dataset is a multivariate time series dataset that describes
the electricity consumption for a single household over four years. The data was collected
between December 2006 and November 2010 and observations of power consumption within the
household were collected every minute. It is a multivariate series comprised of seven variables
(besides the date and time); they are:

� global active power: The total active power consumed by the household (kilowatts).

� global reactive power: The total reactive power consumed by the household (kilowatts).

� voltage: Average voltage (volts).

� global intensity: Average current intensity (amps).

� sub metering 1: Active energy for kitchen (watt-hours of active energy).

� sub metering 2: Active energy for laundry (watt-hours of active energy).

� sub metering 3: Active energy for climate control systems (watt-hours of active energy).

Active and reactive energy refer to the technical details of alternative current. A fourth
sub-metering variable can be created by subtracting the sum of three defined sub-metering
variables from the total active energy. This dataset was introduced and analyzed in Chapter 16.
Refer to that chapter for more details if needed.

20.3 Load and Prepare Dataset

We will use the same framework to load and prepare the data as was used for the naive models.
In the interest of brevity, refer to Chapter 17 for the details on how to load and prepare the
dataset for modeling.

20.4 Model Evaluation

We will use the same framework to evaluate models as was used for the naive models. In
the interest of brevity, refer to Chapter 17 for the details on how to develop a framework for
evaluating forecasts for this dataset. We must update the framework for model evaluation,
specifically the walk-forward validation method used to fit a LSTM model and make a forecast.
Refer to Chapter 19 for the details of the development of the new walk-forward validation
framework for evaluating deep learning models on this problem.
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20.5 LSTMs for Multi-step Forecasting

Recurrent neural networks, or RNNs, are specifically designed to work, learn, and predict
sequence data and can be used for multi-step time series forecasting. For more details on the
use of LSTMs for multi-step forecasting, see Chapter 9. In this tutorial, we will explore a suite
of LSTM architectures for multi-step time series forecasting. Specifically, we will look at how to
develop the following models:

� Vanilla LSTM model with vector output for multi-step forecasting with univariate input
data.

� Encoder-Decoder LSTM model for multi-step forecasting with univariate input data.

� Encoder-Decoder LSTM model for multi-step forecasting with multivariate input data.

� CNN-LSTM Encoder-Decoder model for multi-step forecasting with univariate input
data.

� ConvLSTM Encoder-Decoder model for multi-step forecasting with univariate input
data.

The models will be developed and demonstrated on the household power prediction problem.
A model is considered skillful if it achieves performance better than a naive model, which is an
overall RMSE of about 465 kilowatts across a seven day forecast (for more details of the naive
model, see Chapter 17). We will not focus on the tuning of these models to achieve optimal
performance; instead, we will stop short at skillful models as compared to a naive forecast.
The chosen structures and hyperparameters are chosen with a little trial and error. The scores
should be taken as just an example rather than a study of the optimal model or configuration
for the problem.

Given the stochastic nature of the models, it is good practice to evaluate a given model
multiple times and report the mean performance on a test dataset. In the interest of brevity and
keeping the code simple, we will instead present single-runs of models in this tutorial. We cannot
know which approach will be the most effective for a given multi-step forecasting problem. It is
a good idea to explore a suite of methods in order to discover what works best on your specific
dataset.

20.6 Univariate Input and Vector Output

We will start off by developing a simple or vanilla LSTM model that reads in a sequence of days
of total daily power consumption and predicts a vector output of the next standard week of daily
power consumption. This will provide the foundation for the more elaborate models developed
in subsequent sections. The number of prior days used as input defines the one-dimensional
(1D) subsequence of data that the LSTM will read and learn to extract features. Some ideas on
the size and nature of this input include:

� All prior days, up to years worth of data.

� The prior seven days.
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� The prior two weeks.

� The prior one month.

� The prior one year.

� The prior week and the week to be predicted from one year ago.

There is no right answer; instead, each approach and more can be tested and the performance
of the model can be used to choose the nature of the input that results in the best model
performance. These choices define a few things:

� How the training data must be prepared in order to fit the model.

� How the test data must be prepared in order to evaluate the model.

� How to use the model to make predictions with a final model in the future.

A good starting point would be to use the prior seven days. An LSTM model expects data
to have the shape: [samples, timesteps, features]. One sample will be comprised of seven
time steps with one feature for the seven days of total daily power consumed. The training
dataset has 159 weeks of data, so the shape of the training dataset would be: [159, 7, 1].

This is a good start. The data in this format would use the prior standard week to predict
the next standard week. A problem is that 159 instances is not a lot to train a neural network.
A way to create a lot more training data is to change the problem during training to predict
the next seven days given the prior seven days, regardless of the standard week. This only
impacts the training data, and the test problem remains the same: predict the daily power
consumption for the next standard week given the prior standard week. This will require a little
preparation of the training data. The training data is provided in standard weeks with eight
variables, specifically in the shape [159, 7, 8]. The first step is to flatten the data so that we
have eight time series sequences.

# flatten data

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

Listing 20.1: Example of flattened weekly data.

We then need to iterate over the time steps and divide the data into overlapping windows;
each iteration moves along one time step and predicts the subsequent seven days. For example:

Input, Output

[d01, d02, d03, d04, d05, d06, d07], [d08, d09, d10, d11, d12, d13, d14]

[d02, d03, d04, d05, d06, d07, d08], [d09, d10, d11, d12, d13, d14, d15]

...

Listing 20.2: Example of overlapping weekly data.

We can do this by keeping track of start and end indexes for the inputs and outputs as we
iterate across the length of the flattened data in terms of time steps. We can also do this in a
way where the number of inputs and outputs are parameterized (e.g. n input, n out) so that
you can experiment with different values or adapt it for your own problem. Below is a function
named to supervised() that takes a list of weeks (history) and the number of time steps to
use as inputs and outputs and returns the data in the overlapping moving window format.
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# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

X.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

Listing 20.3: Example of a function for creating overlapping windows of data.

When we run this function on the entire training dataset, we transform 159 samples into
1,099; specifically, the transformed dataset has the shapes X=[1099, 7, 1] and y=[1099, 7].
Next, we can define and fit the LSTM model on the training data. This multi-step time series
forecasting problem is an autoregression. That means it is likely best modeled where that the
next seven days is some function of observations at prior time steps. This and the relatively
small amount of data means that a small model is required.

We will develop a model with a single hidden LSTM layer with 200 units. The number of
units in the hidden layer is unrelated to the number of time steps in the input sequences. The
LSTM layer is followed by a fully connected layer with 200 nodes that will interpret the features
learned by the LSTM layer. Finally, an output layer will directly predict a vector with seven
elements, one for each day in the output sequence. We will use the mean squared error loss
function as it is a good match for our chosen error metric of RMSE. We will use the efficient
Adam implementation of stochastic gradient descent and fit the model for 70 epochs with a
batch size of 16.

The small batch size and the stochastic nature of the algorithm means that the same model
will learn a slightly different mapping of inputs to outputs each time it is trained. This means
results may vary when the model is evaluated. You can try running the model multiple times
and calculate an average of model performance. The build model() below prepares the training
data, defines the model, and fits the model on the training data, returning the fit model ready
for making predictions.

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 70, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# define model
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model = Sequential()

model.add(LSTM(200, activation='relu', input_shape=(n_timesteps, n_features)))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

Listing 20.4: Example of a function for fitting an LSTM model.

Now that we know how to fit the model, we can look at how the model can be used to make
a prediction. Generally, the model expects data to have the same three dimensional shape when
making a prediction. In this case, the expected shape of an input pattern is one sample, seven
days of one feature for the daily power consumed: [1, 7, 1]. Data must have this shape when
making predictions for the test set and when a final model is being used to make predictions in
the future. If you change the number if input days to 14, then the shape of the training data
and the shape of new samples when making predictions must be changed accordingly to have 14
time steps. It is a modeling choice that you must carry forward when using the model.

We are using walk-forward validation to evaluate the model as described in the previous
section. This means that we have the observations available for the prior week in order to
predict the coming week. These are collected into an array of standard weeks called history. In
order to predict the next standard week, we need to retrieve the last days of observations. As
with the training data, we must first flatten the history data to remove the weekly structure so
that we end up with eight parallel time series.

# flatten data

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

Listing 20.5: Example of flattened weekly data.

Next, we need to retrieve the last seven days of daily total power consumed (feature index
0). We will parameterize this as we did for the training data so that the number of prior days
used as input by the model can be modified in the future.

# retrieve last observations for input data

input_x = data[-n_input:, 0]

Listing 20.6: Example of retrieving the required input data.

Next, we reshape the input into the expected three-dimensional structure.

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

Listing 20.7: Example of reshaping input data.

We then make a prediction using the fit model and the input data and retrieve the vector of
seven days of output.

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

Listing 20.8: Example of making a single one-week prediction.
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The forecast() function below implements this and takes as arguments the model fit on
the training dataset, the history of data observed so far, and the number of input time steps
expected by the model.

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

Listing 20.9: Example of a function for making a multi-step forecast with an LSTM model.

That’s it; we now have everything we need to make multi-step time series forecasts with
an LSTM model on the daily total power consumed univariate dataset. We can tie all of this
together. The complete example is listed below.

# univariate multi-step lstm for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)
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# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

X.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 70, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# define model

model = Sequential()

model.add(LSTM(200, activation='relu', input_shape=(n_timesteps, n_features)))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))
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# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# evaluate model and get scores

n_input = 7

score, scores = evaluate_model(train, test, n_input)

# summarize scores

summarize_scores('lstm', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='lstm')

pyplot.show()

Listing 20.10: Example of evaluating a univariate LSTM model for multi-step forecasting.

Running the example fits and evaluates the model, printing the overall RMSE across all
seven days, and the per-day RMSE for each lead time. We can see that in this case, the model
was skillful as compared to a naive forecast, achieving an overall RMSE of about 399 kilowatts,
less than 465 kilowatts achieved by a naive model.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.
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lstm: [399.456] 419.4, 422.1, 384.5, 395.1, 403.9, 317.7, 441.5

Listing 20.11: Sample output from evaluating a univariate LSTM model for multi-step forecasting.

A plot of the daily RMSE is also created. The plot shows that perhaps Tuesdays and Fridays
are easier days to forecast than the other days and that perhaps Saturday at the end of the
standard week is the hardest day to forecast.

Figure 20.1: Line Plot of RMSE per Day for Univariate LSTM with Vector Output and 7-day
Inputs.

We can increase the number of prior days to use as input from seven to 14 by changing the
n input variable.

# evaluate model and get scores

n_input = 14

Listing 20.12: Example of changing the size of the input for making a forecast.

Re-running the example with this change first prints a summary of performance of the model.
In this case, we can see a further drop in the overall RMSE to about 370 kilowatts, suggesting
that further tuning of the input size and perhaps the number of nodes in the model may result
in better performance.
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Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

lstm: [370.028] 387.4, 377.9, 334.0, 371.2, 367.1, 330.4, 415.1

Listing 20.13: Sample output from evaluating the updated univariate LSTM model for multi-step
forecasting.

Comparing the per-day RMSE scores we see some are better and some are worse than using
seven-day inputs. This may suggest benefit in using the two different sized inputs in some way,
such as an ensemble of the two approaches or perhaps a single model (e.g. a multi-headed
model) that reads the training data in different ways.

Figure 20.2: Line Plot of RMSE per Day for Univariate LSTM with Vector Output and 14-day
Inputs.

20.7 Encoder-Decoder LSTM With Univariate Input

In this section, we can update the vanilla LSTM to use an encoder-decoder model. This means
that the model will not output a vector sequence directly. Instead, the model will be comprised
of two sub models, the encoder to read and encode the input sequence, and the decoder that
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will read the encoded input sequence and make a one-step prediction for each element in the
output sequence.

The difference is subtle, as in practice both approaches do in fact predict a sequence output.
The important difference is that an LSTM model is used in the decoder, allowing it to both
know what was predicted for the prior day in the sequence and accumulate internal state while
outputting the sequence. Let’s take a closer look at how this model is defined.

As before, we define an LSTM hidden layer with 200 units. This is the decoder model that
will read the input sequence and will output a 200 element vector (one output per unit) that
captures features from the input sequence. We will use 14 days of total power consumption as
input.

# define encoder

model.add(LSTM(200, activation='relu', input_shape=(n_timesteps, n_features)))

Listing 20.14: Example of defining an encoder model.

We will use a simple encoder-decoder architecture that is easy to implement in Keras,
that has a lot of similarity to the architecture of an LSTM autoencoder. First, the internal
representation of the input sequence is repeated multiple times, once for each time step in the
output sequence. This sequence of vectors will be presented to the LSTM decoder.

# repeat encodering

model.add(RepeatVector(7))

Listing 20.15: Example of repeating the output of the encoder.

We then define the decoder as an LSTM hidden layer with 200 units. Importantly, the
decoder will output the entire sequence, not just the output at the end of the sequence as we
did with the encoder. This means that each of the 200 units will output a value for each of the
seven days, representing the basis for what to predict for each day in the output sequence.

# define decoder model

model.add(LSTM(200, activation='relu', return_sequences=True))

Listing 20.16: Example of defining the decoder model.

We will then use a fully connected layer to interpret each time step in the output sequence
before the final output layer. Importantly, the output layer predicts a single step in the output
sequence, not all seven days at a time. This means that we will use the same layers applied
to each step in the output sequence. It means that the same fully connected layer and output
layer will be used to process each time step provided by the decoder. To achieve this, we will
wrap the interpretation layer and the output layer in a TimeDistributed wrapper that allows
the wrapped layers to be used for each time step from the decoder.

# define output model

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

Listing 20.17: Example of defining the output model.

This allows the LSTM decoder to figure out the context required for each step in the output
sequence and the wrapped dense layers to interpret each time step separately, yet reusing
the same weights to perform the interpretation. An alternative would be to flatten all of the
structure created by the LSTM decoder and to output the vector directly. You can try this as
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an extension to see how it compares. The network therefore outputs a three-dimensional vector
with the same structure as the input, with the dimensions [samples, timesteps, features].

There is a single feature, the daily total power consumed, and there are always seven features.
A single one-week prediction will therefore have the size: [1, 7, 1]. Therefore, when training
the model, we must restructure the output data (y) to have the three-dimensional structure
instead of the two-dimensional structure of [samples, features] used in the previous section.

# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

Listing 20.18: Example of reshaping output data for training.

We can tie all of this together into the updated build model() function listed below.

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 20, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

# define model

model = Sequential()

model.add(LSTM(200, activation='relu', input_shape=(n_timesteps, n_features)))

model.add(RepeatVector(n_outputs))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

Listing 20.19: Example of a function for defining and fitting an encoder-decoder LSTM model.

The complete example with the encoder-decoder model is listed below.

# univariate multi-step encoder-decoder lstm for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import RepeatVector

from keras.layers import TimeDistributed

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data
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train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

X.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 20, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]
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# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

# define model

model = Sequential()

model.add(LSTM(200, activation='relu', input_shape=(n_timesteps, n_features)))

model.add(RepeatVector(n_outputs))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# evaluate model and get scores

n_input = 14
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score, scores = evaluate_model(train, test, n_input)

# summarize scores

summarize_scores('lstm', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='lstm')

pyplot.show()

Listing 20.20: Example of evaluating a univariate Encoder-Decoder LSTM model for multi-step
forecasting.

Running the example fits the model and summarizes the performance on the test dataset.
We can see that in this case, the model is skillful, achieving an overall RMSE score of about 372
kilowatts.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

lstm: [372.595] 379.5, 399.8, 339.6, 372.2, 370.9, 309.9, 424.8

Listing 20.21: Sample output from evaluating a univariate Encoder-Decoder LSTM model for
multi-step forecasting.

A line plot of the per-day RMSE is also created showing a similar pattern in error as was
seen in the previous section.
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Figure 20.3: Line Plot of RMSE per Day for Univariate Encoder-Decoder LSTM with 14-day
Inputs.

20.8 Encoder-Decoder LSTM With Multivariate Input

In this section, we will update the Encoder-Decoder LSTM developed in the previous section to
use each of the eight time series variables to predict the next standard week of daily total power
consumption. We will do this by providing each one-dimensional time series to the model as a
separate sequence of input. The LSTM will in turn create an internal representation of each
input sequence that will together be interpreted by the decoder.

Using multivariate inputs is helpful for those problems where the output sequence is some
function of the observations at prior time steps from multiple different features, not just (or
including) the feature being forecasted. It is unclear whether this is the case in the power
consumption problem, but we can explore it nonetheless. First, we must update the preparation
of the training data to include all of the eight features, not just the one total daily power
consumed. It requires a single line change:

# use all variables for input samples

X.append(data[in_start:in_end, :])

Listing 20.22: Example of preparing data with all input variables.

The complete to supervised() function with this change is listed below.
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# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

X.append(data[in_start:in_end, :])

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

Listing 20.23: Example of a function for creating overlapping windows of data with all variables.

We also must update the function used to make forecasts with the fit model to use all eight
features from the prior time steps. Again, another small change:

# retrieve last observations for input data

input_x = data[-n_input:, :]

# reshape into [1, n_input, n]

input_x = input_x.reshape((1, input_x.shape[0], input_x.shape[1]))

Listing 20.24: Example of using all variables as input when making a forecast.

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, :]

# reshape into [1, n_input, n]

input_x = input_x.reshape((1, input_x.shape[0], input_x.shape[1]))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

Listing 20.25: Example of a function for making a multi-step forecast with a LSTM model and
all input variables.

The same model architecture and configuration is used directly, although we will increase
the number of training epochs from 20 to 50 given the 8-fold increase in the amount of input
data. The complete example is listed below.

# multivariate multi-step encoder-decoder lstm for the power usage dataset

from math import sqrt

from numpy import split
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from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import RepeatVector

from keras.layers import TimeDistributed

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):
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X.append(data[in_start:in_end, :])

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 50, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

# define model

model = Sequential()

model.add(LSTM(200, activation='relu', input_shape=(n_timesteps, n_features)))

model.add(RepeatVector(n_outputs))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, :]

# reshape into [1, n_input, n]

input_x = input_x.reshape((1, input_x.shape[0], input_x.shape[1]))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week
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history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# evaluate model and get scores

n_input = 14

score, scores = evaluate_model(train, test, n_input)

# summarize scores

summarize_scores('lstm', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='lstm')

pyplot.show()

Listing 20.26: Example of evaluating a multivariate Encoder-Decoder LSTM model for multi-step
forecasting.

Running the example fits the model and summarizes the performance on the test dataset.
Experimentation found that this model appears less stable than the univariate case and may
be related to the differing scales of the input eight variables. We can see that in this case, the
model is skillful, achieving an overall RMSE score of about 376 kilowatts.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

lstm: [376.273] 378.5, 381.5, 328.4, 388.3, 361.2, 308.0, 467.2

Listing 20.27: Sample output from evaluating a multivariate Encoder-Decoder LSTM model for
multi-step forecasting.

A line plot of the per-day RMSE is also created.
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Figure 20.4: Line Plot of RMSE per Day for Multivariate Encoder-Decoder LSTM with 14-day
Inputs.

20.9 CNN-LSTM Encoder-Decoder With Univariate In-

put

A convolutional neural network, or CNN, can be used as the encoder in an encoder-decoder
architecture. The CNN does not directly support sequence input; instead, a 1D CNN is capable
of reading across sequence input and automatically learning the salient features. These can
then be interpreted by an LSTM decoder as per normal. We refer to hybrid models that use
a CNN and LSTM as CNN-LSTM models, and in this case we are using them together in an
encoder-decoder architecture. The CNN expects the input data to have the same 3D structure
as the LSTM model, although multiple features are read as different channels that ultimately
have the same effect.

We will simplify the example and focus on the CNN-LSTM with univariate input, but it can
just as easily be updated to use multivariate input, which is left as an exercise. As before, we
will use input sequences comprised of 14 days of daily total power consumption. We will define
a simple but effective CNN architecture for the encoder that is comprised of two convolutional
layers followed by a max pooling layer, the results of which are then flattened.

The first convolutional layer reads across the input sequence and projects the results onto
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feature maps. The second performs the same operation on the feature maps created by the first
layer, attempting to amplify any salient features. We will use 64 feature maps per convolutional
layer and read the input sequences with a kernel size of three time steps. The max pooling
layer simplifies the feature maps by keeping 1

4
of the values with the largest (max) signal. The

distilled feature maps after the pooling layer are then flattened into one long vector that can
then be used as input to the decoding process.

# define cnn input model

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

Listing 20.28: Example of defining the CNN encoder model.

The decoder is the same as was defined in previous sections. The only other change is to set
the number of training epochs to 20. The build model() function with these changes is listed
below.

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 20, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(RepeatVector(n_outputs))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

Listing 20.29: Example of a function for defining and fitting a CNN Encoder-Decoder LSTM
model.

We are now ready to try the encoder-decoder architecture with a CNN encoder. The complete
code listing is provided below.

# univariate multi-step encoder-decoder cnn-lstm for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv
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from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import LSTM

from keras.layers import RepeatVector

from keras.layers import TimeDistributed

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance
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if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

X.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step

in_start += 1

return array(X), array(y)

# train the model

def build_model(train, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 20, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

# define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(RepeatVector(n_outputs))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [1, n_input, 1]

input_x = input_x.reshape((1, len(input_x), 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_input):

# fit model

model = build_model(train, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week
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predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_input)

# store the predictions

predictions.append(yhat_sequence)

# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# evaluate model and get scores

n_input = 14

score, scores = evaluate_model(train, test, n_input)

# summarize scores

summarize_scores('lstm', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='lstm')

pyplot.show()

Listing 20.30: Example of evaluating a univariate CNN Encoder-Decoder LSTM model for
multi-step forecasting.

Running the example fits the model and summarizes the performance on the test dataset. A
little experimentation showed that using two convolutional layers made the model more stable
than using just a single layer. We can see that in this case the model is skillful, achieving an
overall RMSE score of about 372 kilowatts.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

lstm: [372.055] 383.8, 381.6, 339.1, 371.8, 371.8, 319.6, 427.2

Listing 20.31: Sample output from evaluating a univariate CNN Encoder-Decoder LSTM model
for multi-step forecasting.

A line plot of the per-day RMSE is also created.
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Figure 20.5: Line Plot of RMSE per Day for Univariate Encoder-Decoder CNN-LSTM with
14-day Inputs.

20.10 ConvLSTM Encoder-Decoder With Univariate In-

put

A further extension of the CNN-LSTM approach is to perform the convolutions of the CNN (e.g.
how the CNN reads the input sequence data) as part of the LSTM for each time step. This
combination is called a Convolutional LSTM, or ConvLSTM for short, and like the CNN-LSTM
is also used for spatiotemporal data. Unlike an LSTM that reads the data in directly in order
to calculate internal state and state transitions, and unlike the CNN-LSTM that is interpreting
the output from CNN models, the ConvLSTM is using convolutions directly as part of reading
input into the LSTM units themselves. The Keras library provides the ConvLSTM2D class that
supports the ConvLSTM model for 2D data. It can be configured for 1D multivariate time
series forecasting. The ConvLSTM2D class, by default, expects input data to have the shape:
[samples, timesteps, rows, cols, channels].

Where each time step of data is defined as an image of (rows × columns) data points. We are
working with a one-dimensional sequence of total power consumption, which we can interpret
as one row with 14 columns, if we assume that we are using two weeks of data as input. For
the ConvLSTM, this would be a single read: that is, the LSTM would read one time step of 14
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days and perform a convolution across those time steps.
This is not ideal. Instead, we can split the 14 days into two subsequences with a length of

seven days. The ConvLSTM can then read across the two time steps and perform the CNN
process on the seven days of data within each. For this chosen framing of the problem, the
input for the ConvLSTM2D would therefore be: [n, 2, 1, 7, 1]. Or:

� Samples: n, for the number of examples in the training dataset.

� Time: 2, for the two subsequences that we split a window of 14 days into.

� Rows: 1, for the one-dimensional shape of each subsequence.

� Columns: 7, for the seven days in each subsequence.

� Channels: 1, for the single feature that we are working with as input.

You can explore other configurations, such as providing 21 days of input split into three
subsequences of seven days, and/or providing all eight features or channels as input. We can
now prepare the data for the ConvLSTM2D model. First, we must reshape the training dataset
into the expected structure of [samples, timesteps, rows, cols, channels].

# reshape into subsequences [samples, timesteps, rows, cols, channels]

train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features))

Listing 20.32: Example of preparing data for the ConvLSTM2D encoder model.

We can then define the encoder as a ConvLSTM hidden layer followed by a flatten layer
ready for decoding.

# define convlstm input model

model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',

input_shape=(n_steps, 1, n_length, n_features)))

model.add(Flatten())

Listing 20.33: Example of defining the ConvLSTM2D encoder model.

We will also parameterize the number of subsequences (n steps) and the length of each
subsequence (n length) and pass them as arguments. The rest of the model and training is the
same. The build model() function with these changes is listed below.

# train the model

def build_model(train, n_steps, n_length, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 20, 16

n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]

# reshape into subsequences [samples, timesteps, rows, cols, channels]

train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features))

# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

# define model

model = Sequential()

model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',

input_shape=(n_steps, 1, n_length, n_features)))
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model.add(Flatten())

model.add(RepeatVector(n_outputs))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

Listing 20.34: Example of a function for defining and fitting a ConvLSTM Encoder-Decoder
LSTM model.

This model expects five-dimensional data as input. Therefore, we must also update the
preparation of a single sample in the forecast() function when making a prediction.

# reshape into [samples, timesteps, rows, cols, channels]

input_x = input_x.reshape((1, n_steps, 1, n_length, 1))

Listing 20.35: Example of preparing input data for the ConvLSTM2D model when making a
prediction.

The forecast() function with this change and with the parameterized subsequences is
provided below.

# make a forecast

def forecast(model, history, n_steps, n_length, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [samples, timesteps, rows, cols, channels]

input_x = input_x.reshape((1, n_steps, 1, n_length, 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

Listing 20.36: Example of a function for making a forecast with the ConvLSTM Encoder-Decoder
LSTM model.

We now have all of the elements for evaluating an encoder-decoder architecture for multi-step
time series forecasting where a ConvLSTM is used as the encoder. The complete code example
is listed below.

# univariate multi-step encoder-decoder convlstm for the power usage dataset

from math import sqrt

from numpy import split

from numpy import array

from pandas import read_csv

from sklearn.metrics import mean_squared_error

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten
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from keras.layers import LSTM

from keras.layers import RepeatVector

from keras.layers import TimeDistributed

from keras.layers import ConvLSTM2D

# split a univariate dataset into train/test sets

def split_dataset(data):

# split into standard weeks

train, test = data[1:-328], data[-328:-6]

# restructure into windows of weekly data

train = array(split(train, len(train)/7))

test = array(split(test, len(test)/7))

return train, test

# evaluate one or more weekly forecasts against expected values

def evaluate_forecasts(actual, predicted):

scores = list()

# calculate an RMSE score for each day

for i in range(actual.shape[1]):

# calculate mse

mse = mean_squared_error(actual[:, i], predicted[:, i])

# calculate rmse

rmse = sqrt(mse)

# store

scores.append(rmse)

# calculate overall RMSE

s = 0

for row in range(actual.shape[0]):

for col in range(actual.shape[1]):

s += (actual[row, col] - predicted[row, col])**2

score = sqrt(s / (actual.shape[0] * actual.shape[1]))

return score, scores

# summarize scores

def summarize_scores(name, score, scores):

s_scores = ', '.join(['%.1f' % s for s in scores])

print('%s: [%.3f] %s' % (name, score, s_scores))

# convert history into inputs and outputs

def to_supervised(train, n_input, n_out=7):

# flatten data

data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))

X, y = list(), list()

in_start = 0

# step over the entire history one time step at a time

for _ in range(len(data)):

# define the end of the input sequence

in_end = in_start + n_input

out_end = in_end + n_out

# ensure we have enough data for this instance

if out_end < len(data):

x_input = data[in_start:in_end, 0]

x_input = x_input.reshape((len(x_input), 1))

X.append(x_input)

y.append(data[in_end:out_end, 0])

# move along one time step
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in_start += 1

return array(X), array(y)

# train the model

def build_model(train, n_steps, n_length, n_input):

# prepare data

train_x, train_y = to_supervised(train, n_input)

# define parameters

verbose, epochs, batch_size = 0, 20, 16

n_features, n_outputs = train_x.shape[2], train_y.shape[1]

# reshape into subsequences [samples, timesteps, rows, cols, channels]

train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features))

# reshape output into [samples, timesteps, features]

train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))

# define model

model = Sequential()

model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',

input_shape=(n_steps, 1, n_length, n_features)))

model.add(Flatten())

model.add(RepeatVector(n_outputs))

model.add(LSTM(200, activation='relu', return_sequences=True))

model.add(TimeDistributed(Dense(100, activation='relu')))

model.add(TimeDistributed(Dense(1)))

model.compile(loss='mse', optimizer='adam')

# fit network

model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)

return model

# make a forecast

def forecast(model, history, n_steps, n_length, n_input):

# flatten data

data = array(history)

data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

# retrieve last observations for input data

input_x = data[-n_input:, 0]

# reshape into [samples, timesteps, rows, cols, channels]

input_x = input_x.reshape((1, n_steps, 1, n_length, 1))

# forecast the next week

yhat = model.predict(input_x, verbose=0)

# we only want the vector forecast

yhat = yhat[0]

return yhat

# evaluate a single model

def evaluate_model(train, test, n_steps, n_length, n_input):

# fit model

model = build_model(train, n_steps, n_length, n_input)

# history is a list of weekly data

history = [x for x in train]

# walk-forward validation over each week

predictions = list()

for i in range(len(test)):

# predict the week

yhat_sequence = forecast(model, history, n_steps, n_length, n_input)

# store the predictions

predictions.append(yhat_sequence)
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# get real observation and add to history for predicting the next week

history.append(test[i, :])

# evaluate predictions days for each week

predictions = array(predictions)

score, scores = evaluate_forecasts(test[:, :, 0], predictions)

return score, scores

# load the new file

dataset = read_csv('household_power_consumption_days.csv', header=0,

infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])

# split into train and test

train, test = split_dataset(dataset.values)

# define the number of subsequences and the length of subsequences

n_steps, n_length = 2, 7

# define the total days to use as input

n_input = n_length * n_steps

score, scores = evaluate_model(train, test, n_steps, n_length, n_input)

# summarize scores

summarize_scores('lstm', score, scores)

# plot scores

days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']

pyplot.plot(days, scores, marker='o', label='lstm')

pyplot.show()

Listing 20.37: Example of evaluating a univariate ConvLSTM Encoder-Decoder LSTM model
for multi-step forecasting.

Running the example fits the model and summarizes the performance on the test dataset. A
little experimentation showed that using two convolutional layers made the model more stable
than using just a single layer. We can see that in this case the model is skillful, achieving an
overall RMSE score of about 367 kilowatts.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

lstm: [367.929] 416.3, 379.7, 334.7, 362.3, 374.7, 284.8, 406.7

Listing 20.38: Sample output from evaluating a univariate ConvLSTM Encoder-Decoder LSTM
model for multi-step forecasting.

A line plot of the per-day RMSE is also created.
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Figure 20.6: Line Plot of RMSE per Day for Univariate Encoder-Decoder ConvLSTM with
14-day Inputs.

20.11 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Size of Input. Explore more or fewer number of days used as input for the model, such
as three days, 21 days, 30 days, and more.

� Model Tuning. Tune the structure and hyperparameters for a model and further lift
model performance on average.

� Data Scaling. Explore whether data scaling, such as standardization and normalization,
can be used to improve the performance of any of the LSTM models.

� Learning Diagnostics. Use diagnostics such as learning curves for the train and valida-
tion loss and mean squared error to help tune the structure and hyperparameters of a
LSTM model.

If you explore any of these extensions, I’d love to know.
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20.12 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Getting started with the Keras functional API.
https://keras.io/getting-started/functional-api-guide/

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Pooling Layers API.
https://keras.io/layers/pooling/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

20.13 Summary

In this tutorial, you discovered how to develop long short-term memory recurrent neural networks
for multi-step time series forecasting of household power consumption. Specifically, you learned:

� How to develop and evaluate Univariate and multivariate Encoder-Decoder LSTMs for
multi-step time series forecasting.

� How to develop and evaluate an CNN-LSTM Encoder-Decoder model for multi-step time
series forecasting.

� How to develop and evaluate a ConvLSTM Encoder-Decoder model for multi-step time
series forecasting.

20.13.1 Next

This is the final lesson of this part, the next part will focus on how to systematically work
through a real-world multivariate time series classification problem to predict human activities
from accelerometer data.

https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/
https://keras.io/layers/recurrent/
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Overview

This part focuses on the real-world time series classification problem of activity recognition
from multivariate accelerometer data recorded from a smartphone, and how to develop machine
learning and deep learning classification models to address the problem. The tutorials in this
part do not seek to demonstrate the best way to solve the problem, instead the dataset provides
a context on which each of the specific methods can be demonstrated. As such, the performance
of each method on the dataset are not compared directly. After reading the chapters in this
part, you will know:

� A review of recent research highlighting deep learning models and their general configura-
tion that are state-of-the-art for human activity recognition (Chapter 21).

� How to load, summarize and plot a standard human activity recognition dataset comprised
of accelerometer data recorded from a smartphone (Chapter 22).

� How to develop nonlinear and ensemble machine learning models from accelerometer data
with domain-specific engineered features (Chapter 23).

� How to develop and evaluate a suite of Convolutional Neural Network models for human
activity recognition from accelerometer data (Chapter 24).

� How to develop and evaluate a suite of Long Short-Term Memory Neural Network models
for human activity recognition from accelerometer data (Chapter 25).
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Chapter 21

Review of Deep Learning Models for
Human Activity Recognition

Human activity recognition, or HAR, is a challenging time series classification task. It involves
predicting the movement of a person based on sensor data and traditionally involves deep
domain expertise and methods from signal processing to correctly engineer features from the
raw data in order to fit a machine learning model. Recently, deep learning methods such as
convolutional neural networks and recurrent neural networks have shown capable and even
achieve state-of-the-art results by automatically learning features from the raw sensor data. In
this tutorial, you will discover the problem of human activity recognition and the deep learning
methods that are achieving state-of-the-art performance on this problem. After reading this
tutorial, you will know:

� Activity recognition is the problem of predicting the movement of a person, often indoors,
based on sensor data, such as an accelerometer in a smartphone.

� Streams of sensor data are often split into subs-sequences called windows, and each window
is associated with a broader activity, called a sliding window approach.

� Convolutional neural networks and long short-term memory networks, and perhaps both
together, are best suited to learning features from raw sensor data and predicting the
associated movement.

Let’s get started.

21.1 Overview

This tutorial is divided into five parts; they are:

1. Human Activity Recognition

2. Benefits of Neural Network Modeling

3. Supervised Learning Data Representation

4. Convolutional Neural Network Models

5. Recurrent Neural Network Models
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21.2 Human Activity Recognition

Human activity recognition, or HAR for short, is a broad field of study concerned with identifying
the specific movement or action of a person based on sensor data. Movements are often typical
activities performed indoors, such as walking, talking, standing, and sitting. They may also
be more focused activities such as those types of activities performed in a kitchen or on a
factory floor. The sensor data may be remotely recorded, such as video, radar, or other wireless
methods. Alternately, data may be recorded directly on the subject such as by carrying custom
hardware or smartphones that have accelerometers and gyroscopes.

Sensor-based activity recognition seeks the profound high-level knowledge about
human activities from multitudes of low-level sensor readings

— Deep Learning for Sensor-based Activity Recognition: A Survey, 2018.

Historically, sensor data for activity recognition was challenging and expensive to collect,
requiring custom hardware. Now, smartphones and other personal tracking devices used for
fitness and health monitoring are cheap and ubiquitous. As such, sensor data from these devices
is cheaper to collect, more common, and therefore is a more commonly studied version of the
general activity recognition problem. The problem is to predict the activity given a snapshot of
sensor data, typically data from one or a small number of sensor types. Generally, this problem
is framed as a univariate or multivariate time series classification task.

It is a challenging problem as there are no obvious or direct ways to relate the recorded sensor
data to specific human activities and each subject may perform an activity with significant
variation, resulting in variations in the recorded sensor data. The intent is to record sensor data
and corresponding activities for specific subjects, fit a model from this data, and generalize the
model to classify the activity of new unseen subjects from their sensor data.

21.3 Benefits of Neural Network Modeling

Traditionally, methods from the field of signal processing were used to analyze and distill the
collected sensor data. Such methods were for feature engineering, creating domain-specific,
sensor-specific, or signal processing-specific features and views of the original data. Statistical
and machine learning models were then trained on the processed version of the data. A limitation
of this approach is the signal processing and domain expertise required to analyze the raw data
and engineer the features required to fit a model. This expertise would be required for each new
dataset or sensor modality. In essence, it is expensive and not scalable.

However, in most daily HAR tasks, those methods may heavily rely on heuristic
handcrafted feature extraction, which is usually limited by human domain knowledge.
Furthermore, only shallow features can be learned by those approaches, leading
to undermined performance for unsupervised and incremental tasks. Due to those
limitations, the performances of conventional [pattern recognition] methods are
restricted regarding classification accuracy and model generalization.

— Deep Learning for Sensor-based Activity Recognition: A Survey, 2018.
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Ideally, learning methods could be used that automatically learn the features required
to make accurate predictions from the raw data directly. This would allow new problems,
new datasets, and new sensor modalities to be adopted quickly and cheaply. Recently, deep
neural network models have started delivering on their promises of feature learning and are
achieving stat-of-the-art results for human activity recognition. They are capable of performing
automatic feature learning from the raw sensor data and out-perform models fit on hand-crafted
domain-specific features.

... the feature extraction and model building procedures are often performed simul-
taneously in the deep learning models. The features can be learned automatically
through the network instead of being manually designed. Besides, the deep neural
network can also extract high-level representation in deep layer, which makes it more
suitable for complex activity recognition tasks.

— Deep Learning for Sensor-based Activity Recognition: A Survey, 2018.

There are two main approaches to neural networks that are appropriate for time series
classification and that have been demonstrated to perform well on activity recognition using
sensor data from commodity smartphones and fitness tracking devices. They are Convolutional
Neural Network Models and Recurrent Neural Network Models.

RNN and LSTM are recommended to recognize short activities that have natural
order while CNN is better at inferring long term repetitive activities. The reason is
that RNN could make use of the time-order relationship between sensor readings,
and CNN is more capable of learning deep features contained in recursive patterns.

— Deep Learning for Sensor-based Activity Recognition: A Survey, 2018.

21.4 Supervised Learning Data Representation

Before we dive into the specific neural networks that can be used for human activity recognition,
we need to talk about data preparation. Both types of neural networks suitable for time series
classification require that data be prepared in a specific manner in order to fit a model. That is,
in a ’supervised learning’ way that allows the model to associate signal data with an activity
class. A straight-forward data preparation approach that was used both for classical machine
learning methods on the hand-crafted features and for neural networks involves dividing the
input signal data into windows of signals, where a given window may have one to a few seconds
of observation data. This is often called a sliding window.

Human activity recognition aims to infer the actions of one or more persons from a set
of observations captured by sensors. Usually, this is performed by following a fixed
length sliding window approach for the features extraction where two parameters
have to be fixed: the size of the window and the shift.

— A Dynamic Sliding Window Approach for Activity Recognition, 2011.



21.4. Supervised Learning Data Representation 433

Each window is also associated with a specific activity. A given window of data may have
multiple variables, such as the x, y, and z axes of an accelerometer sensor. Let’s make this
concrete with an example. We have sensor data for 10 minutes; that may look like:

x, y, z, activity

1.1, 2.1, 0.1, 1

1.2, 2.2, 0.2, 1

1.3, 2.3, 0.3, 1

...

Listing 21.1: Example of contrived sensor data and associated activity.

If the data is recorded at 8 Hz, that means that there will be eight rows of data for one
second of elapsed time performing an activity. We may choose to have one window of data
represent one second of data; that means eight rows of data for an 8 Hz sensor. If we have x, y,
and z data, that means we would have 3 variables. Therefore, a single window of data would be
a 2-dimensional array with eight time steps and three features. One window would represent
one sample. One minute of data would represent 480 sensor data points, or 60 windows of eight
time steps. The total 10 minutes of data would represent 4,800 data points, or 600 windows of
data.

It is convenient to describe the shape of our prepared sensor data in terms of the number of
samples or windows, the number of time steps in a window, and the number of features observed
at each time step.

[samples, timesteps, features]

Listing 21.2: Example of the dimensionality of sensor data.

Our example of 10 minutes of accelerometer data recorded at 8 Hz would be summarized as
a three-dimensional array with the dimensions:

[600, 8, 3]

Listing 21.3: Specific example of the dimensionality of a sensor dataset.

There is no best window size, and it really depends on the specific model being used, the
nature of the sensor data that was collected, and the activities that are being classified. There
is a tension in the size of the window and the size of the model. Larger windows require large
models that are slower to train, whereas smaller windows require smaller models that are much
easier to fit.

Intuitively, decreasing the window size allows for a faster activity detection, as well
as reduced resources and energy needs. On the contrary, large data windows are
normally considered for the recognition of complex activities

— Window Size Impact in Human Activity Recognition, 2014.

Nevertheless, it is common to use one to two seconds of sensor data in order to classify a
current fragment of an activity.

From the results, reduced windows (2 s or less) are demonstrated to provide the most
accurate detection performance. In fact, the most precise recognizer is obtained for
very short windows (0.25-0.5 s), leading to the perfect recognition of most activities.
Contrary to what is often thought, this study demonstrates that large window sizes
do not necessarily translate into a better recognition performance.
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— Window Size Impact in Human Activity Recognition, 2014.

There is some risk that the splitting of the stream of sensor data into windows may result
in windows that miss the transition of one activity to another. As such, it was traditionally
common to split data into windows with an overlap such that the first half of the window
contained the observations from the last half of the previous window, in the case of a 50%
overlap.

... an incorrect length may truncate an activity instance. In many cases, errors
appear at the beginning or at the end of the activities, when the window overlaps
the end of one activity and the beginning of the next one. In other cases, the window
length may be too short to provide the best information for the recognition process.

— A Dynamic Sliding Window Approach for Activity Recognition, 2011.

It is unclear whether windows with overlap are required for a given problem. In the adoption
of neural network models, the use of overlaps, such as a 50% overlap, will double the size of the
training data, which may aid in modeling smaller datasets, but may also lead to models that
overfit the training dataset.

An overlap between adjacent windows is tolerated for certain applications; however,
this is less frequently used.

— Window Size Impact in Human Activity Recognition, 2014.

21.5 Convolutional Neural Network Models

Convolutional Neural Network models, or CNNs for short, are a type of deep neural network that
were developed for use with image data, e.g. such as handwriting recognition. More recently,
CNNs have been used for time series forecasting. For more information on the use of CNNs for
time series forecasting, see Chapter 8. CNNs can be applied to human activity recognition data.
The CNN model learns to map a given window of signal data to an activity where the model
reads across each window of data and prepares an internal representation of the window.

When applied to time series classification like HAR, CNN has two advantages over
other models: local dependency and scale invariance. Local dependency means the
nearby signals in HAR are likely to be correlated, while scale invariance refers to
the scale-invariant for different paces or frequencies.

— Deep Learning for Sensor-based Activity Recognition: A Survey, 2018.

The first important work using CNNs to HAR was by Ming Zeng, et al in their 2014 paper
Convolutional Neural Networks for Human Activity Recognition using Mobile Sensors. In the
paper, the authors develop a simple CNN model for accelerometer data, where each axis of the
accelerometer data is fed into separate convolutional layers, pooling layers, then concatenated
before being interpreted by hidden fully connected layers. The figure below taken from the
paper clearly shows the topology of the model. It provides a good template for how the CNN
may be used for HAR problems and time series classification in general.
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Figure 21.1: Depiction of CNN Model for Accelerometer Data. Taken from Convolutional Neural
Networks for Human Activity Recognition using Mobile Sensors.

There are many ways to model HAR problems with CNNs. One interesting example was
by Heeryon Cho and Sang Min Yoon in their 2018 paper titled Divide and Conquer-Based 1D
CNN Human Activity Recognition Using Test Data Sharpening. In it, they divide activities into
those that involve movement, called dynamic, and those where the subject is stationary, called
static, then develop a CNN model to discriminate between these two main classes. Then, within
each class, models are developed to discriminate between activities of that type, such as walking
for dynamic and sitting for static.
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Figure 21.2: Separation of Activities as Dynamic or Static. Taken from Divide and Conquer-
Based 1D CNN Human Activity Recognition Using Test Data Sharpening.

They refer to this as a two-stage modeling approach.

Instead of straightforwardly recognizing the individual activities using a single 6-class
classifier, we apply a divide and conquer approach and build a two-stage activity
recognition process, where abstract activities, i.e., dynamic and static activity, are
first recognized using a 2-class or binary classifier, and then individual activities are
recognized using two 3-class classifiers.

— Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data
Sharpening, 2018.

Quite large CNN models were developed, which in turn allowed the authors to claim state-of-
the-art results on challenging standard human activity recognition datasets. Another interesting
approach was proposed by Wenchao Jiang and Zhaozheng Yin in their 2015 paper titled Human
Activity Recognition Using Wearable Sensors by Deep Convolutional Neural Networks. Instead
of using 1D CNNs on the signal data, they instead combine the signal data together to create
images which are then fed to a 2D CNN and processed as image data with convolutions along
the time axis of signals and across signal variables, specifically accelerometer and gyroscope
data.

Firstly, raw signals are stacked row-by-row into a signal image [....]. In the signal
image, every signal sequence has the chance to be adjacent to every other sequence,
which enables DCNN to extract hidden correlations between neighboring signals.
Then, 2D Discrete Fourier Transform (DFT) is applied to the signal image and its
magnitude is chosen as our activity image.

— Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural
Networks, 2015.



21.6. Recurrent Neural Network Models 437

Below is a depiction of the processing of raw sensor data into images, and then from images
into an activity image, the result of a discrete Fourier transform. Finally, another good paper on
the topic is by Charissa Ann Ronao and Sung-Bae Cho in 2016 titled Human activity recognition
with smartphone sensors using deep learning neural networks. Careful study of the use of CNNs
is performed showing that larger kernel sizes of signal data are useful and limited pooling.

Experiments show that convnets indeed derive relevant and more complex features
with every additional layer, although difference of feature complexity level decreases
with every additional layer. A wider time span of temporal local correlation can
be exploited (1 × 9 - 1 × 14) and a low pooling size (1 × 2 - 1 × 3) is shown to be
beneficial.

— Human activity recognition with smartphone sensors using deep learning neural networks,
2016.

Usefully, they also provide the full hyperparameter configuration for the CNN models that
may provide a useful starting point on new HAR and other sequence classification problems,
summarized below.

Figure 21.3: Table of CNN Model Hyperparameter Configuration. Taken from Human activity
recognition with smartphone sensors using deep learning neural networks.

21.6 Recurrent Neural Network Models

Long Short-Term Memory networks or LSTMs for short have proven effective on challenging
sequence prediction problems when trained at scale for such tasks as handwriting recognition,
language modeling, and machine translation. For more information on the use of LSTMs
for time series forecasting, see Chapter 9. LSTMs can be applied to the problem of human
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activity recognition. The LSTM learns to map each window of sensor data to an activity, where
the observations in the input sequence are read one at a time, where each time step may be
comprised of one or more variables (e.g. parallel sequences).

There has been limited application of simple LSTM models to HAR problems. One example
is by Abdulmajid Murad and Jae-Young Pyun in their 2017 paper titled Deep Recurrent Neural
Networks for Human Activity Recognition. Important, in the paper they comment on the
limitation of CNNs in their requirement to operate on fixed-sized windows of sensor data, a
limitation that LSTMs do not strictly have.

However, the size of convolutional kernels restricts the captured range of dependencies
between data samples. As a result, typical models are unadaptable to a wide range
of activity-recognition configurations and require fixed-length input windows.

— Deep Recurrent Neural Networks for Human Activity Recognition, 2017.

They explore the use of LSTMs that both process the sequence data forward (normal) and
both directions (Bidirectional LSTM). Interestingly, the LSTM predicts an activity for each
input time step of a subsequence of sensor data, which are then aggregated in order to predict
an activity for the window.

There will [be] a score for each time step predicting the type of activity occurring at
time t. The prediction for the entire window T is obtained by merging the individual
scores into a single prediction

— Deep Recurrent Neural Networks for Human Activity Recognition, 2017.

The figure below taken from the paper provides a depiction of the LSTM model followed by
fully connected layers used to interpret the internal representation of the raw sensor data.
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Figure 21.4: Depiction of LSTM RNN for Activity Recognition. Taken from Deep Recurrent
Neural Networks for Human Activity Recognition.

It may be more common to use an LSTM in conjunction with a CNN on HAR problems, in
a CNN-LSTM model or ConvLSTM model. This is where a CNN model is used to extract the
features from a subsequence of raw sample data, and output features from the CNN for each
subsequence are then interpreted by an LSTM in aggregate. An example of this is in the 2016
paper by Francisco Javier Ordonez and Daniel Roggen titled Deep Convolutional and LSTM
Recurrent Neural Networks for Multimodal Wearable Activity Recognition.

We introduce a new DNN framework for wearable activity recognition, which we
refer to as DeepConvLSTM. This architecture combines convolutional and recurrent
layers. The convolutional layers act as feature extractors and provide abstract
representations of the input sensor data in feature maps. The recurrent layers model
the temporal dynamics of the activation of the feature maps.
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— Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition, 2016.

A deep network architecture is used with four convolutional layers without any pooling layers,
followed by two LSTM layers to interpret the extracted features over multiple time steps. The
authors claim that the removal of the pooling layers is a critical part of their model architecture,
where the use of pooling layers after the convolutional layers interferes with the convolutional
layers’ ability to learn to downsample the raw sensor data.

In the literature, CNN frameworks often include convolutional and pooling layers
successively, as a measure to reduce data complexity and introduce translation
invariant features. Nevertheless, such an approach is not strictly part of the architec-
ture, and in the time series domain [...] DeepConvLSTM does not include pooling
operations because the input of the network is constrained by the sliding window
mechanism [...] and this fact limits the possibility of downsampling the data, given
that DeepConvLSTM requires a data sequence to be processed by the recurrent
layers. However, without the sliding window requirement, a pooling mechanism
could be useful to cover different sensor data time scales at deeper layers.

— Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition, 2016.

The figure below taken from the paper makes the architecture clearer. Note that layers 6
and 7 in the image are in fact LSTM layers.

Figure 21.5: Depiction of CNN-LSTM Model for Activity Recognition. Taken from Deep Con-
volutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.

21.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Summarize Problem. Summarize the problem of human activity recognition in 1-3
lines.
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� List Methods. Create a list of the methods that are known to perform well for human
activity recognition.

� Example Applications. List 3 examples where models for predicting human activity
from sensor data may be useful.

If you explore any of these extensions, I’d love to know.

21.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

21.8.1 General

� Deep Learning for Sensor-based Activity Recognition: A Survey, 2018.
https://www.sciencedirect.com/science/article/pii/S016786551830045X

21.8.2 Sliding Windows

� A Dynamic Sliding Window Approach for Activity Recognition, 2011.
https://link.springer.com/chapter/10.1007/978-3-642-22362-4_19

� Window Size Impact in Human Activity Recognition, 2014.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029702/

21.8.3 CNNs

� Convolutional Neural Networks for Human Activity Recognition using Mobile Sensors,
2014.
https://ieeexplore.ieee.org/document/7026300/

� Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharp-
ening, 2018.
http://www.mdpi.com/1424-8220/18/4/1055

� Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural Net-
works, 2015.
https://dl.acm.org/citation.cfm?id=2806333

� Human activity recognition with smartphone sensors using deep learning neural networks,
2016.
https://www.sciencedirect.com/science/article/pii/S0957417416302056

https://www.sciencedirect.com/science/article/pii/S016786551830045X
https://link.springer.com/chapter/10.1007/978-3-642-22362-4_19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029702/
https://ieeexplore.ieee.org/document/7026300/
http://www.mdpi.com/1424-8220/18/4/1055
https://dl.acm.org/citation.cfm?id=2806333
https://www.sciencedirect.com/science/article/pii/S0957417416302056
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21.8.4 RNNs

� Deep Recurrent Neural Networks for Human Activity Recognition, 2017.
http://www.mdpi.com/1424-8220/17/11/2556

� Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable
Activity Recognition, 2016.
http://www.mdpi.com/1424-8220/16/1/115/html

21.9 Summary

In this tutorial, you discovered the problem of human activity recognition and the use of deep
learning methods that are achieving state-of-the-art performance on this problem. Specifically,
you learned:

� Activity recognition is the problem of predicting the movement of a person, often indoors,
based on sensor data, such as an accelerometer in a smartphone.

� Streams of sensor data are often split into subs-sequences called windows and each window
is associated with a broader activity, called a sliding window approach.

� Convolutional neural networks and long short-term memory networks, and perhaps both
together, are best suited to learning features from raw sensor data and predicting the
associated movement.

21.9.1 Next

In the next lesson, you will discover how to load and analyze a real-world human activity
recognition dataset.

http://www.mdpi.com/1424-8220/17/11/2556
http://www.mdpi.com/1424-8220/16/1/115/html


Chapter 22

How to Load and Explore Human
Activity Data

Human activity recognition is the problem of classifying sequences of accelerometer data recorded
by specialized harnesses or smartphones into known well-defined movements. It is a challenging
problem given the large number of observations produced each second, the temporal nature of
the observations, and the lack of a clear way to relate accelerometer data to known movements.
Classical approaches to the problem involve hand crafting features from the time series data
based on fixed-sized windows and training machine learning models, such as ensembles of
decision trees. The difficulty is that this feature engineering requires deep expertise in the
field. Recently, deep learning methods such as recurrent neural networks and one-dimensional
convolutional neural networks, or CNNs, have been shown to provide state-of-the-art results on
challenging activity recognition tasks with little or no data feature engineering.

In this tutorial, you will discover the Activity Recognition Using Smartphones dataset for
time series classification and how to load and explore the dataset in order to make it ready for
predictive modeling. This dataset will provided the basis for the remaining tutorials in this part
of the book. After completing this tutorial, you will know:

� How to download and load the dataset into memory.

� How to use line plots, histograms, and box plots to better understand the structure of the
motion data.

� How to model the problem, including framing, data preparation, modeling, and evaluation.

Let’s get started.

22.1 Tutorial Overview

This tutorial is divided into 10 parts; they are:

1. Activity Recognition Using Smartphones Dataset

2. Download the Dataset

3. Load the Dataset

443
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4. Balance of Activity Classes

5. Plot Time Series Per Subject

6. Plot Distribution Per Subject

7. Plot Distribution Per Activity

8. Plot Distribution of Activity Duration

9. Approach to Modeling

22.2 Activity Recognition Using Smartphones Dataset

A standard human activity recognition dataset is the Activity Recognition Using Smartphones
dataset made available in 2012. It was prepared and made available by Davide Anguita, et
al. from the University of Genova, Italy and is described in full in their 2013 paper A Public
Domain Dataset for Human Activity Recognition Using Smartphones. The dataset was modeled
with machine learning algorithms in their 2012 paper titled Human Activity Recognition on
Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. The dataset was
made available and can be downloaded for free from the UCI Machine Learning Repository1.

Figure 22.1: Activity Recognition Experiment Using Smartphone Sensors.

The data was collected from 30 subjects aged between 19 and 48 years old performing one
of 6 standard activities while wearing a waist-mounted smartphone that recorded the movement

1https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones


22.2. Activity Recognition Using Smartphones Dataset 445

data. Video was recorded of each subject performing the activities and the movement data was
labeled manually from these videos. Below is an example video of a subject performing the
activities while their movement data is being recorded2. The six activities performed were as
follows:

1. Walking

2. Walking Upstairs

3. Walking Downstairs

4. Sitting

5. Standing

6. Laying

The movement data recorded was the x, y, and z accelerometer data (linear acceleration)
and gyroscopic data (angular velocity) from the smartphone, specifically a Samsung Galaxy S II.
Observations were recorded at 50 Hz (i.e. 50 data points per second). Each subject performed
the sequence of activities twice, once with the device on their left-hand-side and once with the
device on their right-hand side.

A group of 30 volunteers with ages ranging from 19 to 48 years were selected for
this task. Each person was instructed to follow a protocol of activities while wearing
a waist-mounted Samsung Galaxy S II smartphone. The six selected ADL were
standing, sitting, laying down, walking, walking downstairs and upstairs. Each
subject performed the protocol twice: on the first trial the smartphone was fixed
on the left side of the belt and on the second it was placed by the user himself as
preferred

— A Public Domain Dataset for Human Activity Recognition Using Smartphones, 2013.

The raw data is not available. Instead, a pre-processed version of the dataset was made
available. The pre-processing steps included:

� Pre-processing accelerometer and gyroscope using noise filters.

� Splitting data into fixed windows of 2.56 seconds (128 data points) with 50% overlap.

� Splitting of accelerometer data into gravitational (total) and body motion components.

These signals were preprocessed for noise reduction with a median filter and a 3rd
order low-pass Butterworth filter with a 20 Hz cutoff frequency. [...] The acceleration
signal, which has gravitational and body motion components, was separated using
another Butterworth low-pass filter into body acceleration and gravity.

— A Public Domain Dataset for Human Activity Recognition Using Smartphones, 2013.

2View on YouTube: https://www.youtube.com/watch?v=XOEN9W05_4A

https://www.youtube.com/watch?v=XOEN9W05_4A
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Feature engineering was applied to the window data, and a copy of the data with these
engineered features was made available. A number of time and frequency features commonly
used in the field of human activity recognition were extracted from each window. The result
was a 561 element vector of features. The dataset was split into train (70%) and test (30%) sets
based on data for subjects, e.g. 21 subjects for train and nine for test.

This suggests a framing of the problem where a sequence of movement activity is used as
input to predict the portion (2.56 seconds) of the current activity being performed, where a
model trained on known subjects is used to predict the activity from movement on new subjects.
Early experiment results with a support vector machine intended for use on a smartphone (e.g.
fixed-point arithmetic) resulted in a predictive accuracy of 89% on the test dataset, achieving
similar results as an unmodified SVM implementation.

This method adapts the standard Support Vector Machine (SVM) and exploits
fixed-point arithmetic for computational cost reduction. A comparison with the
traditional SVM shows a significant improvement in terms of computational costs
while maintaining similar accuracy [...]

— Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support
Vector Machine, 2012.

Now that we are familiar with the prediction problem, we will look at loading and exploring
this dataset.

22.3 Download the Dataset

The data is provided as a single zip file that is about 58 megabytes in size. A direct for
downloading the dataset is provided below:

� HAR Smartphones.zip 3

Download the dataset and unzip all files into a new directory in your current working
directory named HARDataset. Inspecting the decompressed contents, you will notice a few
things:

� There are train and test folders containing the split portions of the data for modeling
(e.g. 70%/30%).

� There is a README.txt file that contains a detailed technical description of the dataset
and the contents of the unzipped files.

� There is a features.txt file that contains a technical description of the engineered
features.

The contents of the train and test folders are similar (e.g. folders and file names), although
with differences in the specific data they contain. Inspecting the train folder shows a few
important elements:

3https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip

https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
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� An Inertial Signals folder that contains the preprocessed data.

� The X train.txt file that contains the engineered features intended for fitting a model.

� The y train.txt that contains the class labels for each observation (1-6).

� The subject train.txt file that contains a mapping of each line in the data files with
their subject identifier (1-30).

The number of lines in each file match, indicating that one row is one record in each data
file. The Inertial Signals directory contains 9 files.

� Gravitational acceleration data files for x, y and z axes: total acc x train.txt,
total acc y train.txt, total acc z train.txt.

� Body acceleration data files for x, y and z axes: body acc x train.txt,
body acc y train.txt, body acc z train.txt.

� Body gyroscope data files for x, y and z axes: body gyro x train.txt,
body gyro y train.txt, body gyro z train.txt.

The structure is mirrored in the test directory. We will focus our attention on the data in
the Inertial Signals as this is most interesting in developing machine learning models that
can learn a suitable representation, instead of using the domain-specific feature engineering.
Inspecting a datafile shows that columns are separated by whitespace and values appear to
be scaled to the range -1, 1. This scaling can be confirmed by a note in the README.txt file
provided with the dataset. Now that we know what data we have, we can figure out how to
load it into memory.

22.4 Load the Dataset

In this section, we will develop some code to load the dataset into memory. First, we need to
load a single file. We can use the read csv() Pandas function to load a single data file and
specify that the file has no header and to separate columns using white space.

# load a csv file as a dataframe

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

Listing 22.1: Example of loading a file as a DataFrame.

We can wrap this in a function named load file(). The complete example of this function
is listed below.

# load one file from the har dataset

from pandas import read_csv

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

data = load_file('HARDataset/train/Inertial Signals/total_acc_y_train.txt')
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print(data.shape)

Listing 22.2: Example of loading one axis of accelerometer data.

Running the example loads the file total acc y train.txt, returns a NumPy array, and
prints the shape of the array. We can see that the training data is comprised of 7,352 rows or
windows of data, where each window has 128 observations.

(7352, 128)

Listing 22.3: Example output from loading one axis of accelerometer data.

Next, it would be useful to load a group of files, such as all of the body acceleration data
files as a single group. Ideally, when working with multivariate time series data, it is useful to
have the data structured in the format: [samples, timesteps, features]. This is helpful for
analysis and is the expectation of deep learning models such as convolutional neural networks
and recurrent neural networks. We can achieve this by calling the above load file() function
multiple times, once for each file in a group.

Once we have loaded each file as a NumPy array, we can combine or stack all three arrays
together. We can use the dstack() NumPy function to ensure that each array is stacked in
such a way that the features are separated in the third dimension, as we would prefer. The
function load group() implements this behavior for a list of file names and is listed below.

# load a list of files, such as x, y, z data for a given variable

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

Listing 22.4: Example of a function for loading a group of files.

We can demonstrate this function by loading all of the total acceleration files. The complete
example is listed below.

# load group of files from the har dataset

from numpy import dstack

from pandas import read_csv

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files, such as x, y, z data for a given variable

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded
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# load the total acc data

filenames = ['total_acc_x_train.txt', 'total_acc_y_train.txt', 'total_acc_z_train.txt']

total_acc = load_group(filenames, prefix='HARDataset/train/Inertial Signals/')

print(total_acc.shape)

Listing 22.5: Example of loading a group of accelerometer data files.

Running the example prints the shape of the returned NumPy array, showing the expected
number of samples and time steps with the three features, x, y, and z for the dataset.

(7352, 128, 3)

Listing 22.6: Example output from loading a group of accelerometer data files.

Finally, we can use the two functions developed so far to load all data for the train and the
test dataset. Given the parallel structure in the train and test folders, we can develop a new
function that loads all input and output data for a given folder. The function can build a list of
all 9 data files to load, load them as one NumPy array with 9 features, then load the data file
containing the output class. The load dataset() function below implements this behavior. It
can be called for either the train group or the test group, passed as a string argument.

# load a dataset group, such as train or test

def load_dataset(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

Listing 22.7: Example of a function for loading all data files for either train or test.

The complete example is listed below.

# load all train and test data from the har dataset

from numpy import dstack

from pandas import read_csv

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files, such as x, y, z data for a given variable

def load_group(filenames, prefix=''):
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loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load all train

trainX, trainy = load_dataset('train', 'HARDataset/')

print(trainX.shape, trainy.shape)

# load all test

testX, testy = load_dataset('test', 'HARDataset/')

print(testX.shape, testy.shape)

Listing 22.8: Example of loading all accelerometer data files.

Running the example loads the train and test datasets. We can see that the test dataset
has 2,947 rows of window data. As expected, we can see that the size of windows in the train
and test sets matches and the size of the output (y) in each the train and test case matches the
number of samples.

(7352, 128, 9) (7352, 1)

(2947, 128, 9) (2947, 1)

Listing 22.9: Example output from loading all accelerometer data files.

22.5 Balance of Activity Classes

A good first check of the data is to investigate the balance of each activity. We believe that
each of the 30 subjects performed each of the six activities. Confirming this expectation will
both check that the data is indeed balanced, making it easier to model, and confirm that we are
correctly loading and interpreting the dataset. We can develop a function that summarizes the
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breakdown of the output variables, e.g. the y variable. The function class breakdown() below
implements this behavior, first wrapping the provided NumPy array in a DataFrame, grouping
the rows by the class value, and calculating the size of each group (number of rows). The results
are then summarized, including the count and the percentage.

# summarize the balance of classes in an output variable column

def class_breakdown(data):

# convert the numpy array into a dataframe

df = DataFrame(data)

# group data by the class value and calculate the number of rows

counts = df.groupby(0).size()

# retrieve raw rows

counts = counts.values

# summarize

for i in range(len(counts)):

percent = counts[i] / len(df) * 100

print('Class=%d, total=%d, percentage=%.3f' % (i+1, counts[i], percent))

Listing 22.10: Example of a function for summarizing the class breakdown.

It may be useful to summarize the breakdown of the classes in the train and test datasets
to ensure they have a similar breakdown, then compare the result to the breakdown on the
combined dataset. The complete example is listed below.

# summarize class balance from the har dataset

from numpy import vstack

from pandas import read_csv

from pandas import DataFrame

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# summarize the balance of classes in an output variable column

def class_breakdown(data):

# convert the numpy array into a dataframe

df = DataFrame(data)

# group data by the class value and calculate the number of rows

counts = df.groupby(0).size()

# retrieve raw rows

counts = counts.values

# summarize

for i in range(len(counts)):

percent = counts[i] / len(df) * 100

print('Class=%d, total=%d, percentage=%.3f' % (i+1, counts[i], percent))

# load train file

trainy = load_file('HARDataset/train/y_train.txt')

# summarize class breakdown

print('Train Dataset')

class_breakdown(trainy)

# load test file

testy = load_file('HARDataset/test/y_test.txt')

# summarize class breakdown
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print('Test Dataset')

class_breakdown(testy)

# summarize combined class breakdown

print('Both')

combined = vstack((trainy, testy))

class_breakdown(combined)

Listing 22.11: Example of summarizing the breakdown of classes in the dataset.

Running the example first summarizes the breakdown for the training set. We can see a
pretty similar distribution of each class hovering between 13% and 19% of the dataset. The
result on the test set and on both datasets together look very similar. It is likely safe to work
with the dataset assuming the distribution of classes is balanced per train and test set and
perhaps per subject.

Train Dataset

Class=1, total=1226, percentage=16.676

Class=2, total=1073, percentage=14.595

Class=3, total=986, percentage=13.411

Class=4, total=1286, percentage=17.492

Class=5, total=1374, percentage=18.689

Class=6, total=1407, percentage=19.138

Test Dataset

Class=1, total=496, percentage=16.831

Class=2, total=471, percentage=15.982

Class=3, total=420, percentage=14.252

Class=4, total=491, percentage=16.661

Class=5, total=532, percentage=18.052

Class=6, total=537, percentage=18.222

Both

Class=1, total=1722, percentage=16.720

Class=2, total=1544, percentage=14.992

Class=3, total=1406, percentage=13.652

Class=4, total=1777, percentage=17.254

Class=5, total=1906, percentage=18.507

Class=6, total=1944, percentage=18.876

Listing 22.12: Example output from summarizing the breakdown of classes in the dataset.

22.6 Plot Time Series Per Subject

We are working with time series data, therefore an import check is to create a line plot of the
raw data. The raw data is comprised of windows of time series data per variable, and the
windows do have a 50% overlap. This suggests we may see some repetition in the observations
as a line plot unless the overlap is removed. We can start off by loading the training dataset
using the functions developed above.

# load data

trainX, trainy = load_dataset('train', 'HARDataset/')

Listing 22.13: Example of loading the training dataset.
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Next, we can load the subject train.txt in the train directory that provides a mapping
of rows to the subject to which it belongs. We can load this file using the load file() function.
Once loaded, we can also use the unique() NumPy function to retrieve a list of the unique
subjects in the training dataset.

# load subject mapping

sub_map = load_file('HARDataset/train/subject_train.txt')

train_subjects = unique(sub_map)

print(train_subjects)

Listing 22.14: Example of loading the mapping of observations to subjects.

Next, we need a way to retrieve all of the rows for a single subject, e.g. subject number 1.
We can do this by finding all of the row numbers that belong to a given subject and use those
row numbers to select the samples from the loaded X and y data from the training dataset. The
data for subject() function below implements this behavior. It will take the loaded training
data, the loaded mapping of row number to subjects, and the subject identification number for
the subject that we are interested in, and will return the X and y data for only that subject.

# get all data for one subject

def data_for_subject(X, y, sub_map, sub_id):

# get row indexes for the subject id

ix = [i for i in range(len(sub_map)) if sub_map[i]==sub_id]

# return the selected samples

return X[ix, :, :], y[ix]

Listing 22.15: Example of a function to get data for a given subject id.

Now that we have data for one subject, we can plot it. The data is comprised of windows
with overlap. We can write a function to remove this overlap and squash the windows down
for a given variable into one long sequence that can be plotted directly as a line plot. The
to series() function below implements this behavior for a given variable, e.g. array of windows.

# convert a series of windows to a 1D list

def to_series(windows):

series = list()

for window in windows:

# remove the overlap from the window

half = int(len(window) / 2) - 1

for value in window[-half:]:

series.append(value)

return series

Listing 22.16: Example of a function to convert window data to a series.

Finally, we have enough to plot the data. We can plot each of the nine variables for the
subject in turn and a final plot for the activity level. Each series will have the same number of
time steps (length of x-axis), therefore, it may be useful to create a subplot for each variable and
align all plots vertically so we can compare the movement on each variable. The plot subject()

function below implements this behavior for the X and y data for a single subject. The function
assumes the same order of the variables (3rd axis) as was loaded in the load dataset() function.
A crude title is also added to each plot so we don’t get easily confused about what we are
looking at.

# plot the data for one subject
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def plot_subject(X, y):

pyplot.figure()

# determine the total number of plots

n, off = X.shape[2] + 1, 0

# plot total acc

for i in range(3):

pyplot.subplot(n, 1, off+1)

pyplot.plot(to_series(X[:, :, off]))

pyplot.title('total acc '+str(i), y=0, loc='left', size=7)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

off += 1

# plot body acc

for i in range(3):

pyplot.subplot(n, 1, off+1)

pyplot.plot(to_series(X[:, :, off]))

pyplot.title('body acc '+str(i), y=0, loc='left', size=7)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

off += 1

# plot body gyro

for i in range(3):

pyplot.subplot(n, 1, off+1)

pyplot.plot(to_series(X[:, :, off]))

pyplot.title('body gyro '+str(i), y=0, loc='left', size=7)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

off += 1

# plot activities

pyplot.subplot(n, 1, n)

pyplot.plot(y)

pyplot.title('activity', y=0, loc='left', size=7)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

Listing 22.17: Example of a function to plot data for a subject.

The complete example is listed below.

# plot all vars for one subject in the har dataset

from numpy import dstack

from numpy import unique

from pandas import read_csv

from matplotlib import pyplot

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files, such as x, y, z data for a given variable

def load_group(filenames, prefix=''):
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loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# get all data for one subject

def data_for_subject(X, y, sub_map, sub_id):

# get row indexes for the subject id

ix = [i for i in range(len(sub_map)) if sub_map[i]==sub_id]

# return the selected samples

return X[ix, :, :], y[ix]

# convert a series of windows to a 1D list

def to_series(windows):

series = list()

for window in windows:

# remove the overlap from the window

half = int(len(window) / 2) - 1

for value in window[-half:]:

series.append(value)

return series

# plot the data for one subject

def plot_subject(X, y):

pyplot.figure()

# determine the total number of plots

n, off = X.shape[2] + 1, 0

# plot total acc

for i in range(3):

pyplot.subplot(n, 1, off+1)

pyplot.plot(to_series(X[:, :, off]))

pyplot.title('total acc '+str(i), y=0, loc='left', size=7)

# turn off ticks to remove clutter
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pyplot.yticks([])

pyplot.xticks([])

off += 1

# plot body acc

for i in range(3):

pyplot.subplot(n, 1, off+1)

pyplot.plot(to_series(X[:, :, off]))

pyplot.title('body acc '+str(i), y=0, loc='left', size=7)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

off += 1

# plot body gyro

for i in range(3):

pyplot.subplot(n, 1, off+1)

pyplot.plot(to_series(X[:, :, off]))

pyplot.title('body gyro '+str(i), y=0, loc='left', size=7)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

off += 1

# plot activities

pyplot.subplot(n, 1, n)

pyplot.plot(y)

pyplot.title('activity', y=0, loc='left', size=7)

# turn off ticks to remove clutter

pyplot.yticks([])

pyplot.xticks([])

pyplot.show()

# load data

trainX, trainy = load_dataset('train', 'HARDataset/')

# load mapping of rows to subjects

sub_map = load_file('HARDataset/train/subject_train.txt')

train_subjects = unique(sub_map)

print(train_subjects)

# get the data for one subject

sub_id = train_subjects[0]

subX, suby = data_for_subject(trainX, trainy, sub_map, sub_id)

print(subX.shape, suby.shape)

# plot data for subject

plot_subject(subX, suby)

Listing 22.18: Example of creating line plots accelerometer data for a subject.

Running the example prints the unique subjects in the training dataset, the sample of the
data for the first subject, and creates one figure with 10 plots, one for each of the nine input
variables and the output class.

[ 1 3 5 6 7 8 11 14 15 16 17 19 21 22 23 25 26 27 28 29 30]

(341, 128, 9) (341, 1)

Listing 22.19: Example output from preparing data to plot for a subject.

In the plot, we can see periods of large movement corresponding with activities 1, 2, and
3: the walking activities. We can also see much less activity (i.e. a relatively straight line) for
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higher numbered activities, 4, 5, and 6 (sitting, standing, and laying). This is good confirmation
that we have correctly loaded interpreted the raw dataset. We can see that this subject has
performed the same general sequence of activities twice, and some activities are performed more
than two times. This suggests that for a given subject, we should not make assumptions about
what activities may have been performed or their order.

We can also see some relatively large movement for some stationary activities, such as laying.
It is possible that these are outliers or related to activity transitions. It may be possible to
smooth or remove these observations as outliers. Finally, we see a lot of commonality across
the nine variables. It is very likely that only a subset of these traces are required to develop a
predictive model.

Figure 22.2: Line plot for all variables for a single subject.

We can re-run the example for another subject by making one small change, e.g. choose the
identifier of the second subject in the training dataset.

# get the data for one subject

sub_id = train_subjects[1]

Listing 22.20: Example of changing the subject data to plot.

The plot for the second subject shows similar behavior with no surprises. The double
sequence of activities does appear more regular than the first subject.
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Figure 22.3: Line plot for all variables for a second single subject.

22.7 Plot Distribution Per Subject

As the problem is framed, we are interested in using the movement data from some subjects
to predict activities from the movement of other subjects. This suggests that there must be
regularity in the movement data across subjects. We know that the data has been scaled between
-1 and 1, presumably per subject, suggesting that the amplitude of the detected movements
will be similar. We would also expect that the distribution of movement data would be similar
across subjects, given that they performed the same actions.

We can check for this by plotting and comparing the histograms of the movement data across
subjects. A useful approach would be to create one plot per subject and plot all three axis of a
given data (e.g. total acceleration), then repeat this for multiple subjects. The plots can be
modified to use the same axis and aligned horizontally so that the distributions for each variable
across subjects can be compared. The plot subject histograms() function below implements
this behavior. The function takes the loaded dataset and mapping of rows to subjects as well as
a maximum number of subjects to plot, fixed at 10 by default.

# plot histograms for multiple subjects

def plot_subject_histograms(X, y, sub_map, offset, n=10):

pyplot.figure()

# get unique subjects
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subject_ids = unique(sub_map[:,0])

# enumerate subjects

for k in range(n):

sub_id = subject_ids[k]

# get data for one subject

subX, _ = data_for_subject(X, y, sub_map, sub_id)

# total acc

for i in range(3):

ax = pyplot.subplot(n, 1, k+1)

ax.set_xlim(-1,1)

ax.hist(to_series(subX[:,:,offset+i]), bins=100)

pyplot.yticks([])

pyplot.xticks([-1,0,1])

pyplot.show()

Listing 22.21: Example of a create histograms of data.

The addition of an offset argument allows the same function to be called for each of the 3
groups of variables to plot at a time: total acceleration, body acceleration and gyroscopic with
offsets 0, 3 and 6 respectively.

# plot total acceleration histograms for subjects

plot_subject_histograms(X, y, sub_map, 0)

# plot body acceleration histograms for subjects

plot_subject_histograms(X, y, sub_map, 3)

# plot gyroscopic histograms for subjects

plot_subject_histograms(X, y, sub_map, 6)

Listing 22.22: Example of creating per-subjects histogram plots for each of the 3 groups of
variables.

For a given call, a plot is created for each subject and the three variables for one data type
are plotted as histograms with 100 bins, to help to make the distribution obvious. Each plot
shares the same axis, which is fixed at the bounds of -1 and 1. The complete example is listed
below.

# plot histograms for multiple subjects from the har dataset

from numpy import unique

from numpy import dstack

from pandas import read_csv

from matplotlib import pyplot

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files, such as x, y, z data for a given variable

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded
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# load a dataset group, such as train or test

def load_dataset(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# get all data for one subject

def data_for_subject(X, y, sub_map, sub_id):

# get row indexes for the subject id

ix = [i for i in range(len(sub_map)) if sub_map[i]==sub_id]

# return the selected samples

return X[ix, :, :], y[ix]

# convert a series of windows to a 1D list

def to_series(windows):

series = list()

for window in windows:

# remove the overlap from the window

half = int(len(window) / 2) - 1

for value in window[-half:]:

series.append(value)

return series

# plot histograms for multiple subjects

def plot_subject_histograms(X, y, sub_map, offset, n=10):

pyplot.figure()

# get unique subjects

subject_ids = unique(sub_map[:,0])

# enumerate subjects

for k in range(n):

sub_id = subject_ids[k]

# get data for one subject

subX, _ = data_for_subject(X, y, sub_map, sub_id)

# total acc

for i in range(3):

ax = pyplot.subplot(n, 1, k+1)

ax.set_xlim(-1,1)

ax.hist(to_series(subX[:,:,offset+i]), bins=100)

pyplot.yticks([])

pyplot.xticks([-1,0,1])

pyplot.show()
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# load training dataset

X, y = load_dataset('train', 'HARDataset/')

# load mapping of rows to subjects

sub_map = load_file('HARDataset/train/subject_train.txt')

# plot total acceleration histograms for subjects

plot_subject_histograms(X, y, sub_map, 0)

# plot body acceleration histograms for subjects

plot_subject_histograms(X, y, sub_map, 3)

# plot gyroscopic histograms for subjects

plot_subject_histograms(X, y, sub_map, 6)

Listing 22.23: Example of plotting histograms of total accelerometer data.

Running the example creates three figures, each with 10 plots with histograms for the three
axis. Each of the three axes on a given plot have a different color, specifically x, y, and z are
blue, orange, and green respectively. The first figure summarizes the total acceleration. We can
see that the distribution for a given axis does appear Gaussian with large separate groups of
data. We can see some of the distributions align (e.g. main groups in the middle around 0.0),
suggesting there may be some continuity of the movement data across subjects, at least for this
data.

Figure 22.4: Histograms of the total acceleration data for 10 subjects.

The second figure shows histograms for the body acceleration with very different results.
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We can see all data clustered around 0.0 across axis within a subject and across subjects.
This suggests that perhaps the data was centered (zero mean). This strong consistency across
subjects may aid in modeling, and may suggest that the differences across subjects in the total
acceleration data may not be as helpful.

Figure 22.5: Histograms of the body acceleration data for 10 subjects.

Finally, a figure is generated summarizing the distribution the gyroscopic data for the first
10 subjects. We see a high likelihood of a Gaussian distribution for each axis across each
subject centered on 0.0. The distributions are a little wider and show fatter tails, but this is an
encouraging finding for modeling movement data across subjects.
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Figure 22.6: Histograms of the body gyroscope data for 10 subjects.

22.8 Plot Distribution Per Activity

We are interested in discriminating between activities based on activity data. The simplest
case for this would be to discriminate between activities for a single subject. One way to
investigate this would be to review the distribution of movement data for a subject by activity.
We would expect to see some difference in the distribution between the movement data for
different activities by a single subject.

We can review this by creating a histogram plot per activity, with the three axis of a
given data type on each plot. Again, the plots can be arranged horizontally to compare the
distribution of each data axis by activity. We would expect to see differences in the distributions
across activities down the plots. First, we must group the traces for a subject by activity. The
data by activity() function below implements this behavior.

# group data by activity

def data_by_activity(X, y, activities):

# group windows by activity

return {a:X[y[:,0]==a, :, :] for a in activities}

Listing 22.24: Example of a function for splitting data by activity.
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We can now create plots per activity for a given subject. The plot activity histograms()

function below implements this function for the traces data for a given subject. First, the data
is grouped by activity, then one subplot is created for each activity and each axis of the data
type is added as a histogram.

# plot histograms for each activity for a subject

def plot_activity_histograms(X, y, offset):

# get a list of unique activities for the subject

activity_ids = unique(y[:,0])

# group windows by activity

grouped = data_by_activity(X, y, activity_ids)

# plot per activity, histograms for each axis

pyplot.figure()

for k in range(len(activity_ids)):

act_id = activity_ids[k]

# total acceleration

for i in range(3):

ax = pyplot.subplot(len(activity_ids), 1, k+1)

ax.set_xlim(-1,1)

# create histogra,

pyplot.hist(to_series(grouped[act_id][:,:,offset+i]), bins=100)

# create title

pyplot.title('activity '+str(act_id), y=0, loc='left', size=10)

# simplify axis

pyplot.yticks([])

pyplot.xticks([-1,0,1])

pyplot.show()

Listing 22.25: Example of a function for plotting histograms of data by activity.

As in the previous section, the addition of an offset argument allows the same function
to be called for each of the 3 groups of variables to plot at a time: total acceleration, body
acceleration and gyroscopic with offsets 0, 3 and 6 respectively.

# plot total acceleration histograms per activity for a subject

plot_activity_histograms(subX, suby, 0)

# plot body acceleration histograms per activity for a subject

plot_activity_histograms(subX, suby, 3)

# plot gyroscopic histograms per activity for a subject

plot_activity_histograms(subX, suby, 6)

Listing 22.26: Example of creating per-activity histogram plots for each of the 3 groups of
variables.

The complete example is listed below.

# plot histograms per activity for a subject from the har dataset

from numpy import dstack

from numpy import unique

from pandas import read_csv

from matplotlib import pyplot

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values
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# load a list of files, such as x, y, z data for a given variable

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# get all data for one subject

def data_for_subject(X, y, sub_map, sub_id):

# get row indexes for the subject id

ix = [i for i in range(len(sub_map)) if sub_map[i]==sub_id]

# return the selected samples

return X[ix, :, :], y[ix]

# convert a series of windows to a 1D list

def to_series(windows):

series = list()

for window in windows:

# remove the overlap from the window

half = int(len(window) / 2) - 1

for value in window[-half:]:

series.append(value)

return series

# group data by activity

def data_by_activity(X, y, activities):

# group windows by activity

return {a:X[y[:,0]==a, :, :] for a in activities}

# plot histograms for each activity for a subject

def plot_activity_histograms(X, y, offset):

# get a list of unique activities for the subject

activity_ids = unique(y[:,0])



22.8. Plot Distribution Per Activity 466

# group windows by activity

grouped = data_by_activity(X, y, activity_ids)

# plot per activity, histograms for each axis

pyplot.figure()

for k in range(len(activity_ids)):

act_id = activity_ids[k]

# total acceleration

for i in range(3):

ax = pyplot.subplot(len(activity_ids), 1, k+1)

ax.set_xlim(-1,1)

# create histogra,

pyplot.hist(to_series(grouped[act_id][:,:,offset+i]), bins=100)

# create title

pyplot.title('activity '+str(act_id), y=0, loc='left', size=10)

# simplify axis

pyplot.yticks([])

pyplot.xticks([-1,0,1])

pyplot.show()

# load data

trainX, trainy = load_dataset('train', 'HARDataset/')

# load mapping of rows to subjects

sub_map = load_file('HARDataset/train/subject_train.txt')

train_subjects = unique(sub_map)

# get the data for one subject

sub_id = train_subjects[0]

subX, suby = data_for_subject(trainX, trainy, sub_map, sub_id)

# plot total acceleration histograms per activity for a subject

plot_activity_histograms(subX, suby, 0)

# plot body acceleration histograms per activity for a subject

plot_activity_histograms(subX, suby, 3)

# plot gyroscopic histograms per activity for a subject

plot_activity_histograms(subX, suby, 6)

Listing 22.27: Example of plotting histograms per activity.

Running the example creates three figures, where each figure has with six subplots, one
for each activity for the first subject in the train dataset. Each of the x, y, and z axes for
the total acceleration data have a blue, orange, and green histogram respectively. In the first
figure, can see that each activity has a different data distribution, with a marked difference
between the large movement (first three activities) with the stationary activities (last three
activities). Data distributions for the first three activities look Gaussian with perhaps differing
means and standard deviations. Distributions for the latter activities look multi-modal (i.e.
multiple peaks).
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Figure 22.7: Histograms of the total acceleration data by activity.

The second figure summarizes the body acceleration distributions per activity. We can
see more similar distributions across the activities amongst the in-motion vs. stationary
activities. The data looks bimodal in the case of the in-motion activities and perhaps Gaussian
or exponential in the case of the stationary activities. The pattern we see with the total vs.
body acceleration distributions by activity mirrors what we see with the same data types across
subjects in the previous section. Perhaps the total acceleration data is the key to discriminating
the activities.
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Figure 22.8: Histograms of the body acceleration data by activity.

The final figure summarizes the gyroscopic data per activity for the first subject. We can see
plots with the similar pattern as the body acceleration data, although showing perhaps fat-tailed
Gaussian-like distributions instead of bimodal distributions for the in-motion activities.
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Figure 22.9: Histograms of the body gyroscope data by activity.

All of these plots were created for the first subject, and we would expect to see similar
distributions and relationships for the movement data across activities for other subjects.

22.9 Plot Distribution of Activity Duration

A final area to consider is how long a subject spends on each activity. This is closely related to
the balance of classes. If the activities (classes) are generally balanced within a dataset, then
we expect the balance of activities for a given subject over the course of their trace would also
be reasonably well balanced. We can confirm this by calculating how long (in samples or rows)
each subject spends on each activity and look at the distribution of durations for each activity.

A handy way to review this data is to summarize the distributions as box plots showing the
median (line), the middle 50% (box), the general extent of the data as the interquartile range
(the whiskers), and outliers (as dots). The function plot activity durations by subject()

below implements this behavior by first splitting the dataset by subject, then the subjects data
by activity and counting the rows spent on each activity, before finally creating a box plot per
activity of the duration measurements.

# plot activity durations by subject

def plot_activity_durations_by_subject(X, y, sub_map):

# get unique subjects and activities
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subject_ids = unique(sub_map[:,0])

activity_ids = unique(y[:,0])

# enumerate subjects

activity_windows = {a:list() for a in activity_ids}

for sub_id in subject_ids:

# get data for one subject

_, subj_y = data_for_subject(X, y, sub_map, sub_id)

# count windows by activity

for a in activity_ids:

activity_windows[a].append(len(subj_y[subj_y[:,0]==a]))

# organize durations into a list of lists

durations = [activity_windows[a] for a in activity_ids]

pyplot.boxplot(durations, labels=activity_ids)

pyplot.show()

Listing 22.28: Example of a function for plotting activity duration.

The complete example is listed below.

# plot durations of each activity by subject from the har dataset

from numpy import dstack

from numpy import unique

from pandas import read_csv

from matplotlib import pyplot

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files, such as x, y, z data for a given variable

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output
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y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# get all data for one subject

def data_for_subject(X, y, sub_map, sub_id):

# get row indexes for the subject id

ix = [i for i in range(len(sub_map)) if sub_map[i]==sub_id]

# return the selected samples

return X[ix, :, :], y[ix]

# convert a series of windows to a 1D list

def to_series(windows):

series = list()

for window in windows:

# remove the overlap from the window

half = int(len(window) / 2) - 1

for value in window[-half:]:

series.append(value)

return series

# group data by activity

def data_by_activity(X, y, activities):

# group windows by activity

return {a:X[y[:,0]==a, :, :] for a in activities}

# plot activity durations by subject

def plot_activity_durations_by_subject(X, y, sub_map):

# get unique subjects and activities

subject_ids = unique(sub_map[:,0])

activity_ids = unique(y[:,0])

# enumerate subjects

activity_windows = {a:list() for a in activity_ids}

for sub_id in subject_ids:

# get data for one subject

_, subj_y = data_for_subject(X, y, sub_map, sub_id)

# count windows by activity

for a in activity_ids:

activity_windows[a].append(len(subj_y[subj_y[:,0]==a]))

# organize durations into a list of lists

durations = [activity_windows[a] for a in activity_ids]

pyplot.boxplot(durations, labels=activity_ids)

pyplot.show()

# load training dataset

X, y = load_dataset('train', 'HARDataset/')

# load mapping of rows to subjects

sub_map = load_file('HARDataset/train/subject_train.txt')

# plot durations

plot_activity_durations_by_subject(X, y, sub_map)

Listing 22.29: Example of plotting activity durations.

Running the example creates six box plots, one for each activity. Each box plot summarizes
how long (in rows or the number of windows) subjects in the training dataset spent on each
activity. We can see that the subjects spent more time on stationary activities (4, 5 and 6) and
less time on the in motion activities (1, 2 and 3), with the distribution for 3 being the smallest,
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or where time was spent least. The spread across the activities is not large, suggesting little
need to trim the longer duration activities or oversampling of the in-motion activities. Although,
these approaches remain available if skill of a predictive model on the in-motion activities is
generally worse.

Figure 22.10: Box plot of activity durations per subject on train set.

We can create a similar box plot for the training data with the following additional lines.

# load test dataset

X, y = load_dataset('test', 'HARDataset/')

# load mapping of rows to subjects

sub_map = load_file('HARDataset/test/subject_test.txt')

# plot durations

plot_activity_durations_by_subject(X, y, sub_map)

Listing 22.30: Example of preparing the test dataset.

Running the updated example shows a similar relationship between activities. This is
encouraging, suggesting that indeed the test and training dataset are reasonably representative
of the whole dataset.
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Figure 22.11: Boxplot of activity durations per subject on test set.

Now that we have explored the dataset, we can suggest some ideas for how it may be
modeled.

22.10 Approach to Modeling

In this section, we summarize some approaches to modeling the activity recognition dataset.
These ideas are divided into the main themes of a project.

22.10.1 Problem Framing

The first important consideration is the framing of the prediction problem. The framing of the
problem as described in the original work is the prediction of activity for a new subject given
their movement data, based on the movement data and activities of known subjects. We can
summarize this as:

� Predict activity given a window of movement data.

This is a reasonable and useful framing of the problem. Some other possible ways to frame
the provided data as a prediction problem include the following:
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� Predict activity given a time step of movement data.

� Predict activity given multiple windows of movement data.

� Predict the activity sequence given multiple windows of movement data.

� Predict activity given a sequence of movement data for a pre-segmented activity.

� Predict activity cessation or transition given a time step of movement data.

� Predict a stationary or non-stationary activity given a window of movement data.

Some of these framings may be too challenging or too easy. Nevertheless, these framings
provide additional ways to explore and understand the dataset.

22.10.2 Data Preparation

Some data preparation may be required prior to using the raw data to train a model. The data
already appears to have been scaled to the range [-1,1]. Some additional data transforms that
could be performed prior to modeling include:

� Normalization across subjects.

� Standardization per subject.

� Standardization across subjects.

� Axis feature selection.

� Data type feature selection.

� Signal outlier detection and removal.

� Removing windows of over-represented activities.

� Oversampling windows of under-represented activities.

� Downsampling signal data to 1
4
, 1

2
, 1, 2 or other fractions of a section.

22.10.3 Predictive Modeling

Generally, the problem is a time series multiclass classification problem. As we have seen, it
may also be framed as a binary classification problem and a multi-step time series classification
problem. The original paper explored the use of a classical machine learning algorithm on a
version of the dataset where features were engineered from each window of data. Specifically, a
modified support vector machine.

The results of an SVM on the feature-engineered version of the dataset may provide a
baseline in performance on the problem. Expanding from this point, the evaluation of multiple
linear, nonlinear, and ensemble machine learning algorithms on this version of the dataset may
provide an improved benchmark. The focus of the problem may be on the un-engineered or raw
version of the dataset. Here, a progression in model complexity may be explored in order to
determine the most suitable model for the problem; some candidate models to explore include:
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� Common linear, nonlinear, and ensemble machine learning algorithms.

� Multilayer Perceptron.

� Convolutional neural networks, specifically 1D CNNs.

� Recurrent neural networks, specifically LSTMs.

� Hybrids of CNNs and LSTMs such as the CNN-LSTM and the ConvLSTM.

22.11 Model Evaluation

The evaluation of the model in the original paper involved using a train/test split of the data by
subject with a 70% and 30% ratio. Exploration of this pre-defined split of the data suggests that
both sets are reasonably representative of the whole dataset. Another alternative methodology
may be to use leave-one-out cross-validation, or LOOCV, per subject. In addition to giving
the data for each subject the opportunity for being used as the withheld test set, the approach
would provide a population of 30 scores that can be averaged and summarized, which may offer
a more robust result.

Model performance was presented using classification accuracy and a confusion matrix, both
of which are suitable for the multiclass nature of the prediction problem. Specifically, the
confusion matrix will aid in determining whether some classes are easier or more challenging to
predict than others, such as those for stationary activities versus those activities that involve
motion.

22.12 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� List Intuitions. Outline the method that you believe may be most effective in making
forecasts with on this dataset.

� Apply Taxonomy. Use the taxonomy in Chapter 2 to describe the dataset presented in
this chapter.

� Additional Analysis. Use summary statistics and/or plots to explore one more aspect
of the dataset that may provide insight into modeling this problem.

If you explore any of these extensions, I’d love to know.

22.13 Further Reading

This section provides more resources on the topic if you are looking to go deeper.
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22.13.1 Papers

� Deep Learning for Sensor-based Activity Recognition: A Survey, 2017.
https://arxiv.org/abs/1707.03502

� A Public Domain Dataset for Human Activity Recognition Using Smartphones, 2013.
https://upcommons.upc.edu/handle/2117/20897

� Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support
Vector Machine, 2012.
https://link.springer.com/chapter/10.1007/978-3-642-35395-6_30

22.13.2 API

� pandas.read csv API.
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

� numpy.dstack API.
https://www.numpy.org/devdocs/reference/generated/numpy.dstack.html

22.13.3 Articles

� Human Activity Recognition Dataset, UCI Machine Learning Repository.

� Activity recognition, Wikipedia.
https://en.wikipedia.org/wiki/Activity_recognition

� Activity Recognition Experiment Using Smartphone Sensors, YouTube.
https://www.youtube.com/watch?v=XOEN9W05_4A

22.14 Summary

In this tutorial, you discovered the Activity Recognition Using Smartphones Dataset for time
series classification and how to load and explore the dataset in order to make it ready for
predictive modeling. Specifically, you learned:

� How to download and load the dataset into memory.

� How to use line plots, histograms, and box plots to better understand the structure of the
motion data.

� How to model the problem including framing, data preparation, modeling, and evaluation.

22.14.1 Next

In the next lesson, you will discover how to develop Machine Learning models for predicting
human activities from a stream of smartphone accelerometer data.

https://arxiv.org/abs/1707.03502
https://upcommons.upc.edu/handle/2117/20897
https://link.springer.com/chapter/10.1007/978-3-642-35395-6_30
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://www.numpy.org/devdocs/reference/generated/numpy.dstack.html
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://en.wikipedia.org/wiki/Activity_recognition
https://www.youtube.com/watch?v=XOEN9W05_4A


Chapter 23

How to Develop ML Models for
Human Activity Recognition

Human activity recognition is the problem of classifying sequences of accelerometer data
recorded by specialized harnesses or smartphones into known well-defined movements. Classical
approaches to the problem involve hand crafting features from the time series data based on
fixed-sized windows and training machine learning models, such as ensembles of decision trees.
The difficulty is that this feature engineering requires deep expertise in the field.

Recently, deep learning methods such as recurrent neural networks and one-dimensional
convolutional neural networks, or CNNs, have been shown to provide state-of-the-art results on
challenging activity recognition tasks with little or no data feature engineering, instead using
feature learning on raw data. In this tutorial, you will discover how to evaluate a diverse suite
of machine learning algorithms on the Activity Recognition Using Smartphones dataset. After
completing this tutorial, you will know:

� How to load and evaluate nonlinear and ensemble machine learning algorithms on the
feature-engineered version of the activity recognition dataset.

� How to load and evaluate machine learning algorithms on the raw signal data for the
activity recognition dataset.

� How to define reasonable lower and upper bounds on the expected performance of more
sophisticated algorithms capable of feature learning, such as deep learning methods.

Let’s get started.

23.1 Tutorial Overview

This tutorial is divided into three parts; they are:

1. Activity Recognition Using Smartphones Dataset

2. Modeling Feature Engineered Data

3. Modeling Raw Data

477
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23.2 Activity Recognition Using Smartphones Dataset

Human Activity Recognition, or HAR for short, is the problem of predicting what a person is
doing based on a trace of their movement using sensors. A standard human activity recognition
dataset is the Activity Recognition Using Smartphones made available in 2012. For more
information on this dataset, see Chapter 22. The data is provided as a single zip file that is
about 58 megabytes in size. A direct for downloading the dataset is provided below:

� HAR Smartphones.zip 1

Download the dataset and unzip all files into a new directory in your current working
directory named HARDataset.

23.3 Modeling Feature Engineered Data

In this section, we will develop code to load the feature-engineered version of the dataset and
evaluate a suite of nonlinear machine learning algorithms, including SVM used in the original
paper. The goal is to achieve at least 89% accuracy on the test dataset. The results of methods
using the feature-engineered version of the dataset provide a baseline for any methods developed
for the raw data version. This section is divided into five parts; they are:

1. Load Dataset

2. Define Models

3. Evaluate Models

4. Summarize Results

5. Complete Example

23.3.1 Load Dataset

The first step is to load the train and test input (X) and output (y) data. Specifically, the
following files:

� HARDataset/train/X train.txt

� HARDataset/train/y train.txt

� HARDataset/test/X test.txt

� HARDataset/test/y test.txt

The input data is in CSV format where columns are separated via whitespace. Each of these
files can be loaded as a NumPy array. The load file() function below loads a dataset given
the file path to the file and returns the loaded data as a NumPy array.

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip

https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
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# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

Listing 23.1: Example of a function for loading a single file.

We can call this function to load the X and y files for a given train or test set group, given
the similarity in directory layout and filenames. The load dataset group() function below
will load both of these files for a group and return the X and y elements as NumPy arrays.
This function can then be used to load the X and y elements for both the train and test groups.

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

# load input data

X = load_file(prefix + group + '/X_'+group+'.txt')

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

Listing 23.2: Example of a function for loading a group of files.

Finally, we can load both the train and test dataset and return them as NumPy arrays ready
for fitting and evaluating machine learning models.

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

print(trainX.shape, trainy.shape)

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

print(testX.shape, testy.shape)

# flatten y

trainy, testy = trainy[:,0], testy[:,0]

print(trainX.shape, trainy.shape, testX.shape, testy.shape)

return trainX, trainy, testX, testy

Listing 23.3: Example of a function for loading the entire dataset.

We can call this function to load all of the required data; for example:

# load dataset

trainX, trainy, testX, testy = load_dataset()

Listing 23.4: Example of calling a function to load the dataset.

23.3.2 Define Models

Next, we can define a list of machine learning models to evaluate on this problem. We will
evaluate the models using default configurations. We are not looking for optimal configurations
of these models at this point, just a general idea of how well sophisticated models with default
configurations perform on this problem. We will evaluate a diverse set of nonlinear and ensemble
machine learning algorithms, specifically:
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Nonlinear Algorithms:

� k-Nearest Neighbors

� Classification and Regression Tree

� Support Vector Machine

� Naive Bayes

Ensemble Algorithms:

� Bagged Decision Trees

� Random Forest

� Extra Trees

� Gradient Boosting Machine

We will define the models and store them in a dictionary that maps the model object to a
short name that will help in analyzing the results. The define models() function below defines
the eight models that we will evaluate.

# create a dict of standard models to evaluate {name:object}

def define_models(models=dict()):

# nonlinear models

models['knn'] = KNeighborsClassifier(n_neighbors=7)

models['cart'] = DecisionTreeClassifier()

models['svm'] = SVC()

models['bayes'] = GaussianNB()

# ensemble models

models['bag'] = BaggingClassifier(n_estimators=100)

models['rf'] = RandomForestClassifier(n_estimators=100)

models['et'] = ExtraTreesClassifier(n_estimators=100)

models['gbm'] = GradientBoostingClassifier(n_estimators=100)

print('Defined %d models' % len(models))

return models

Listing 23.5: Example of a function for defining machine learning models.

This function is quite extensible and you can easily update to define any machine learning
models or model configurations you wish.

23.3.3 Evaluate Models

The next step is to evaluate the defined models in the loaded dataset. This step is divided into
the evaluation of a single model and the evaluation of all of the models. We will evaluate a
single model by first fitting it on the training dataset, making a prediction on the test dataset,
and then evaluating the prediction using a metric. In this case we will use classification accuracy
that will capture the performance (or error) of a model given the balance observations across
the six activities (or classes). The evaluate model() function below implements this behavior,
evaluating a given model and returning the classification accuracy as a percentage.
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# evaluate a single model

def evaluate_model(trainX, trainy, testX, testy, model):

# fit the model

model.fit(trainX, trainy)

# make predictions

yhat = model.predict(testX)

# evaluate predictions

accuracy = accuracy_score(testy, yhat)

return accuracy * 100.0

Listing 23.6: Example of a function for evaluating a machine learning model.

We can now call the evaluate model() function repeatedly for each of the defined model.
The evaluate models() function below implements this behavior, taking the dictionary of
defined models, and returns a dictionary of model names mapped to their classification accuracy.
Because the evaluation of the models may take a few minutes, the function prints the performance
of each model after it is evaluated as some verbose feedback.

# evaluate a dict of models {name:object}, returns {name:score}

def evaluate_models(trainX, trainy, testX, testy, models):

results = dict()

for name, model in models.items():

# evaluate the model

results[name] = evaluate_model(trainX, trainy, testX, testy, model)

# show process

print('>%s: %.3f' % (name, results[name]))

return results

Listing 23.7: Example of a function for evaluating multiple machine learning models.

23.3.4 Summarize Results

The final step is to summarize the findings. We can sort all of the results by the classification
accuracy in descending order because we are interested in maximizing accuracy. The results
of the evaluated models can then be printed, clearly showing the relative rank of each of the
evaluated models. The summarize results() function below implements this behavior.

# print and plot the results

def summarize_results(results, maximize=True):

# create a list of (name, mean(scores)) tuples

mean_scores = [(k,v) for k,v in results.items()]

# sort tuples by mean score

mean_scores = sorted(mean_scores, key=lambda x: x[1])

# reverse for descending order (e.g. for accuracy)

if maximize:

mean_scores = list(reversed(mean_scores))

print()

for name, score in mean_scores:

print('Name=%s, Score=%.3f' % (name, score))

Listing 23.8: Example of a function for summarizing model performance.
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23.3.5 Complete Example

We know that we have all of the pieces in place. The complete example of evaluating a suite of
eight machine learning models on the feature-engineered version of the dataset is listed below.

# spot check ml algorithms on engineered-features from the har dataset

from pandas import read_csv

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import GradientBoostingClassifier

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

# load input data

X = load_file(prefix + group + '/X_'+group+'.txt')

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# flatten y

trainy, testy = trainy[:,0], testy[:,0]

return trainX, trainy, testX, testy

# create a dict of standard models to evaluate {name:object}

def define_models(models=dict()):

# nonlinear models

models['knn'] = KNeighborsClassifier(n_neighbors=7)

models['cart'] = DecisionTreeClassifier()

models['svm'] = SVC()

models['bayes'] = GaussianNB()

# ensemble models

models['bag'] = BaggingClassifier(n_estimators=100)

models['rf'] = RandomForestClassifier(n_estimators=100)

models['et'] = ExtraTreesClassifier(n_estimators=100)

models['gbm'] = GradientBoostingClassifier(n_estimators=100)

print('Defined %d models' % len(models))

return models

# evaluate a single model
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def evaluate_model(trainX, trainy, testX, testy, model):

# fit the model

model.fit(trainX, trainy)

# make predictions

yhat = model.predict(testX)

# evaluate predictions

accuracy = accuracy_score(testy, yhat)

return accuracy * 100.0

# evaluate a dict of models {name:object}, returns {name:score}

def evaluate_models(trainX, trainy, testX, testy, models):

results = dict()

for name, model in models.items():

# evaluate the model

results[name] = evaluate_model(trainX, trainy, testX, testy, model)

# show process

print('>%s: %.3f' % (name, results[name]))

return results

# print and plot the results

def summarize_results(results, maximize=True):

# create a list of (name, mean(scores)) tuples

mean_scores = [(k,v) for k,v in results.items()]

# sort tuples by mean score

mean_scores = sorted(mean_scores, key=lambda x: x[1])

# reverse for descending order (e.g. for accuracy)

if maximize:

mean_scores = list(reversed(mean_scores))

print()

for name, score in mean_scores:

print('Name=%s, Score=%.3f' % (name, score))

# load dataset

trainX, trainy, testX, testy = load_dataset()

# get model list

models = define_models()

# evaluate models

results = evaluate_models(trainX, trainy, testX, testy, models)

# summarize results

summarize_results(results)

Listing 23.9: Example of evaluating machine learning models for activity recognition.

Running the example first loads the train and test datasets. The eight models are then
evaluated in turn, printing the performance for each. Finally, a rank of the models by their
performance on the test set is displayed. We can see that both the ExtraTrees ensemble method
and the Support Vector Machines nonlinear methods achieve a performance of about 94%
accuracy on the test set. This is a great result, exceeding the reported 89% by SVM in the
original paper.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

Defined 8 models
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>knn: 90.329

>cart: 86.020

>svm: 94.028

>bayes: 77.027

>bag: 89.820

>rf: 92.772

>et: 94.028

>gbm: 93.756

Name=et, Score=94.028

Name=svm, Score=94.028

Name=gbm, Score=93.756

Name=rf, Score=92.772

Name=knn, Score=90.329

Name=bag, Score=89.820

Name=cart, Score=86.020

Name=bayes, Score=77.027

Listing 23.10: Example output from evaluating machine learning models for activity recognition.

These results show what is possible given domain expertise in the preparation of the data and
the engineering of domain-specific features. As such, these results can be taken as a performance
upper-bound of what could be pursued through more advanced methods that may be able to
automatically learn features as part of fitting the model, such as deep learning methods. Any
such advanced methods would be fit and evaluated on the raw data from which the engineered
features were derived. And as such, the performance of machine learning algorithms evaluated
on that data directly may provide an expected lower bound on the performance of any more
advanced methods. We will explore this in the next section.

23.4 Modeling Raw Data

We can use the same framework for evaluating machine learning models on the raw data. The
raw data does require some more work to load. There are three main signal types in the raw
data: total acceleration, body acceleration, and body gyroscope. Each has three axes of data.
This means that there are a total of nine variables for each time step. Further, each series of
data has been partitioned into overlapping windows of 2.65 seconds of data, or 128 time steps.
These windows of data correspond to the windows of engineered features (rows) in the previous
section.

This means that one row of data has 128 × 9 or 1,152 elements. This is a little less than
double the size of the 561 element vectors in the previous section and it is likely that there is
some redundant data. The signals are stored in the /Inertial Signals/ directory under the
train and test subdirectories. Each axis of each signal is stored in a separate file, meaning that
each of the train and test datasets have nine input files to load and one output file to load. We
can batch the loading of these files into groups given the consistent directory structures and file
naming conventions.

First, we can load all data for a given group into a single three-dimensional NumPy array,
where the dimensions of the array are [samples, timesteps, features]. To make this clearer,
there are 128 time steps and nine features, where the number of samples is the number of rows
in any given raw signal data file. The load group() function below implements this behavior.
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The dstack() NumPy function allows us to stack each of the loaded 3D arrays into a single 3D
array where the variables are separated on the third dimension (features).

# load a list of files into a 3D array of [samples, timesteps, features]

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

Listing 23.11: Example of a function for loading a group of raw files.

We can use this function to load all input signal data for a given group, such as train or test.
The load dataset group() function below loads all input signal data and the output data for
a single group using the consistent naming conventions between the directories.

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

Listing 23.12: Example of a function for loading multiple groups of raw files.

Finally, we can load each of the train and test datasets. As part of preparing the loaded data,
we must flatten the windows and features into one long vector. We can do this with the NumPy
reshape function and convert the three dimensions of [samples, timesteps, features] into
the two dimensions of [samples, timesteps × features]. The load dataset() function
below implements this behavior and returns the train and test X and y elements ready for
fitting and evaluating the defined models.

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

print(trainX.shape, trainy.shape)

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

print(testX.shape, testy.shape)
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# flatten X

trainX = trainX.reshape((trainX.shape[0], trainX.shape[1] * trainX.shape[2]))

testX = testX.reshape((testX.shape[0], testX.shape[1] * testX.shape[2]))

# flatten y

trainy, testy = trainy[:,0], testy[:,0]

print(trainX.shape, trainy.shape, testX.shape, testy.shape)

return trainX, trainy, testX, testy

Listing 23.13: Example of a function for loading the raw dataset.

Putting this all together, the complete example is listed below.

# spot check on raw data from the har dataset

from numpy import dstack

from pandas import read_csv

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import GradientBoostingClassifier

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files into a 3D array of [samples, timesteps, features]

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output



23.4. Modeling Raw Data 487

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# flatten X

trainX = trainX.reshape((trainX.shape[0], trainX.shape[1] * trainX.shape[2]))

testX = testX.reshape((testX.shape[0], testX.shape[1] * testX.shape[2]))

# flatten y

trainy, testy = trainy[:,0], testy[:,0]

return trainX, trainy, testX, testy

# create a dict of standard models to evaluate {name:object}

def define_models(models=dict()):

# nonlinear models

models['knn'] = KNeighborsClassifier(n_neighbors=7)

models['cart'] = DecisionTreeClassifier()

models['svm'] = SVC()

models['bayes'] = GaussianNB()

# ensemble models

models['bag'] = BaggingClassifier(n_estimators=100)

models['rf'] = RandomForestClassifier(n_estimators=100)

models['et'] = ExtraTreesClassifier(n_estimators=100)

models['gbm'] = GradientBoostingClassifier(n_estimators=100)

print('Defined %d models' % len(models))

return models

# evaluate a single model

def evaluate_model(trainX, trainy, testX, testy, model):

# fit the model

model.fit(trainX, trainy)

# make predictions

yhat = model.predict(testX)

# evaluate predictions

accuracy = accuracy_score(testy, yhat)

return accuracy * 100.0

# evaluate a dict of models {name:object}, returns {name:score}

def evaluate_models(trainX, trainy, testX, testy, models):

results = dict()

for name, model in models.items():

# evaluate the model

results[name] = evaluate_model(trainX, trainy, testX, testy, model)

# show process

print('>%s: %.3f' % (name, results[name]))

return results

# print and plot the results

def summarize_results(results, maximize=True):

# create a list of (name, mean(scores)) tuples

mean_scores = [(k,v) for k,v in results.items()]

# sort tuples by mean score
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mean_scores = sorted(mean_scores, key=lambda x: x[1])

# reverse for descending order (e.g. for accuracy)

if maximize:

mean_scores = list(reversed(mean_scores))

print()

for name, score in mean_scores:

print('Name=%s, Score=%.3f' % (name, score))

# load dataset

trainX, trainy, testX, testy = load_dataset()

# get model list

models = define_models()

# evaluate models

results = evaluate_models(trainX, trainy, testX, testy, models)

# summarize results

summarize_results(results)

Listing 23.14: Example of evaluating machine learning models for activity recognition on the
raw dataset.

Running the example first loads the dataset. Next the eight defined models are evaluated in
turn. The final results suggest that ensembles of decision trees perform the best on the raw
data. Gradient Boosting and Extra Trees perform the best with about 87% and 86% accuracy,
about seven points below the best performing models on the feature-engineered version of
the dataset. It is encouraging that the Extra Trees ensemble method performed well on both
datasets; it suggests it and similar tree ensemble methods may be suited to the problem, at
least in this simplified framing. We can also see the drop of SVM to about 72% accuracy. The
good performance of ensembles of decision trees may suggest the need for feature selection and
the ensemble methods ability to select those features that are most relevant to predicting the
associated activity.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

Defined 8 models

>knn: 61.893

>cart: 72.141

>svm: 76.960

>bayes: 72.480

>bag: 84.527

>rf: 84.662

>et: 86.902

>gbm: 87.615

Name=gbm, Score=87.615

Name=et, Score=86.902

Name=rf, Score=84.662

Name=bag, Score=84.527

Name=svm, Score=76.960

Name=bayes, Score=72.480

Name=cart, Score=72.141

Name=knn, Score=61.893
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Listing 23.15: Example output from evaluating machine learning models for activity recognition
on the raw dataset.

As noted in the previous section, these results provide a lower-bound on accuracy for any
more sophisticated methods that may attempt to learn higher order features automatically (e.g.
via feature learning in deep learning methods) from the raw data. In summary, the bounds for
such methods extend on this dataset from about 87% accuracy with GBM on the raw data to
about 94% with Extra Trees and SVM on the highly processed dataset, [87% to 94%].

23.5 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� More Algorithms. Only eight machine learning algorithms were evaluated on the
problem; try some linear methods and perhaps some more nonlinear and ensemble methods.

� Algorithm Tuning. No tuning of the machine learning algorithms was performed; mostly
default configurations were used. Pick a method such as SVM, ExtraTrees, or Gradient
Boosting and grid search a suite of different hyperparameter configurations to see if you
can further lift performance on the problem.

� Data Scaling. The data is already scaled to [-1,1], perhaps per subject. Explore whether
additional scaling, such as standardization, can result in better performance, perhaps on
methods sensitive to such scaling such as kNN.

If you explore any of these extensions, I’d love to know.

23.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� scikit-learn: Machine Learning in Python.
http://scikit-learn.org/stable/

� sklearn.metrics.accuracy score API.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_

score.html

� sklearn.neighbors API.
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors

� sklearn.tree API.
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree

� sklearn.svm API.
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
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� sklearn.naive bayes API.
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes

� sklearn.ensemble API.
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

23.7 Summary

In this tutorial, you discovered how to evaluate a diverse suite of machine learning algorithms
on the Activity Recognition Using Smartphones dataset. Specifically, you learned:

� How to load and evaluate nonlinear and ensemble machine learning algorithms on the
feature-engineered version of the activity recognition dataset.

� How to load and evaluate machine learning algorithms on the raw signal data for the
activity recognition dataset.

� How to define reasonable lower and upper bounds on the expected performance of more
sophisticated algorithms capable of feature learning, such as deep learning methods.

23.7.1 Next

In the next lesson, you will discover how to develop Convolutional Neural Network models for
predicting human activities from a stream of smartphone accelerometer data.

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble


Chapter 24

How to Develop CNNs for Human
Activity Recognition

Human activity recognition is the problem of classifying sequences of accelerometer data
recorded by specialized harnesses or smartphones into known well-defined movements. Classical
approaches to the problem involve hand crafting features from the time series data based on
fixed-sized windows and training machine learning models, such as ensembles of decision trees.
The difficulty is that this feature engineering requires deep expertise in the field. Recently, deep
learning methods such as recurrent neural networks and one-dimensional convolutional neural
networks, or CNNs, have been shown to provide state-of-the-art results on challenging activity
recognition tasks with little or no data feature engineering, instead using feature learning on raw
data. In this tutorial, you will discover how to develop one-dimensional convolutional neural
networks for time series classification on the problem of human activity recognition. After
completing this tutorial, you will know:

� How to load and prepare the data for a standard human activity recognition dataset and
develop a single 1D CNN model that achieves excellent performance on the raw data.

� How to further tune the performance of the model, including data transformation, filter
maps, and kernel sizes.

� How to develop a sophisticated multi-headed one-dimensional convolutional neural network
model that provides an ensemble-like result.

Let’s get started.

24.1 Tutorial Overview

This tutorial is divided into four parts; they are:

1. Activity Recognition Using Smartphones Dataset

2. CNN for Activity Recognition

3. Tuned CNN Model

4. Multi-headed CNN Model

491
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24.2 Activity Recognition Using Smartphones Dataset

Human Activity Recognition, or HAR for short, is the problem of predicting what a person is
doing based on a trace of their movement using sensors. A standard human activity recognition
dataset is the Activity Recognition Using Smartphones made available in 2012. For more
information on this dataset, see Chapter 22. The data is provided as a single zip file that is
about 58 megabytes in size. A direct for downloading the dataset is provided below:

� HAR Smartphones.zip 1

Download the dataset and unzip all files into a new directory in your current working
directory named HARDataset.

24.3 CNN for Activity Recognition

In this section, we will develop a one-dimensional convolutional neural network model (1D
CNN) for the human activity recognition dataset. Convolutional neural network models were
developed for image classification problems, where the model learns an internal representation
of a two-dimensional input, in a process referred to as feature learning. Although we refer
to the model as 1D, it supports multiple dimensions of input as separate channels, like the
color channels of an image (red, green and blue). This same process can be harnessed on
one-dimensional sequences of data, such as in the case of acceleration and gyroscopic data for
human activity recognition. The model learns to extract features from sequences of observations
and how to map the internal features to different activity types. For more information on CNNs
for time series forecasting, see Chapter 8.

The benefit of using CNNs for sequence classification is that they can learn from the raw
time series data directly, and in turn do not require domain expertise to manually engineer
input features. The model can learn an internal representation of the time series data and
ideally achieve comparable performance to models fit on a version of the dataset with engineered
features. This section is divided into 4 parts; they are:

1. Load Data

2. Fit and Evaluate Model

3. Summarize Results

4. Complete Example

Some of the details on loading and preparing the dataset were covered in Chapters 22 and
23. There is some repetition here in order to customize the data preparation and prediction
evaluation for deep learning models.

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip

https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
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24.3.1 Load Data

The first step is to load the raw dataset into memory. There are three main signal types in the
raw data: total acceleration, body acceleration, and body gyroscope. Each has three axes of
data. This means that there are a total of nine variables for each time step. Further, each series
of data has been partitioned into overlapping windows of 2.65 seconds of data, or 128 time steps.
These windows of data correspond to the windows of engineered features (rows) in the previous
section.

This means that one row of data has (128 × 9), or 1,152, elements. This is a little less than
double the size of the 561 element vectors in the previous section and it is likely that there
is some redundant data. The signals are stored in the /Inertial Signals/ directory under
the train and test subdirectories. Each axis of each signal is stored in a separate file, meaning
that each of the train and test datasets have nine input files to load and one output file to load.
We can batch the loading of these files into groups given the consistent directory structures
and file naming conventions. The input data is in CSV format where columns are separated by
whitespace. Each of these files can be loaded as a NumPy array. The load file() function
below loads a dataset given the file path to the file and returns the loaded data as a NumPy
array.

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

Listing 24.1: Example of a function for loading a single file.

We can then load all data for a given group (train or test) into a single three-dimensional
NumPy array, where the dimensions of the array are [samples, timesteps, features]. To
make this clearer, there are 128 time steps and nine features, where the number of samples is the
number of rows in any given raw signal data file. The load group() function below implements
this behavior. The dstack() NumPy function allows us to stack each of the loaded 3D arrays
into a single 3D array where the variables are separated on the third dimension (features).

# load a list of files into a 3D array of [samples, timesteps, features]

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

Listing 24.2: Example of a function for loading a group of files.

We can use this function to load all input signal data for a given group, such as train or test.
The load dataset group() function below loads all input signal data and the output data for
a single group using the consistent naming conventions between the train and test directories.

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()
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# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

Listing 24.3: Example of a function for loading a dataset group of files.

Finally, we can load each of the train and test datasets. The output data is defined as an
integer for the class number. We must one hot encode these class integers so that the data is
suitable for fitting a neural network multiclass classification model. We can do this by calling
the to categorical() Keras function. The load dataset() function below implements this
behavior and returns the train and test X and y elements ready for fitting and evaluating the
defined models.

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

print(trainX.shape, trainy.shape)

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

print(testX.shape, testy.shape)

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

print(trainX.shape, trainy.shape, testX.shape, testy.shape)

return trainX, trainy, testX, testy

Listing 24.4: Example of a function for loading the entire dataset.

24.3.2 Fit and Evaluate Model

Now that we have the data loaded into memory ready for modeling, we can define, fit, and
evaluate a 1D CNN model. We can define a function named evaluate model() that takes the
train and test dataset, fits a model on the training dataset, evaluates it on the test dataset, and
returns an estimate of the model’s performance. First, we must define the CNN model using
the Keras deep learning library. The model requires a three-dimensional input with [samples,

timesteps, features].
This is exactly how we have loaded the data, where one sample is one window of the time

series data, each window has 128 time steps, and a time step has nine variables or features. The
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output for the model will be a six-element vector containing the probability of a given window
belonging to each of the six activity types. These input and output dimensions are required
when fitting the model, and we can extract them from the provided training dataset.

# define data shape

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

Listing 24.5: Example of a model shape based on data shape.

The model is defined as a Sequential Keras model, for simplicity. We will define the model
as having two 1D CNN layers, followed by a dropout layer for regularization, then a pooling
layer. It is common to define CNN layers in groups of two in order to give the model a good
chance of learning features from the input data. CNNs learn very quickly, so the dropout layer
is intended to help slow down the learning process and hopefully result in a better final model.
The pooling layer reduces the learned features to 1

4
their size, consolidating them to only the

most essential elements. After the CNN and pooling, the learned features are flattened to one
long vector and pass through a fully connected layer before the output layer used to make a
prediction. The fully connected layer ideally provides a buffer between the learned features and
the output with the intent of interpreting the learned features before making a prediction.

For this model, we will use a standard configuration of 64 parallel feature maps and a kernel
size of 3. The feature maps are the number of times the input is processed or interpreted,
whereas the kernel size is the number of input time steps considered as the input sequence is
read or processed onto the feature maps. The efficient Adam version of stochastic gradient
descent will be used to optimize the network, and the categorical cross entropy loss function
will be used given that we are learning a multiclass classification problem. The definition of the
model is listed below.

# define the CNN model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 24.6: Example of defining a 1D CNN model.

The model is fit for a fixed number of epochs, in this case 10, and a batch size of 32 samples
will be used, where 32 windows of data will be exposed to the model before the weights of the
model are updated. Once the model is fit, it is evaluated on the test dataset and the accuracy
of the fit model on the test dataset is returned. The complete evaluate model() function is
listed below.

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

verbose, epochs, batch_size = 0, 10, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))
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model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

Listing 24.7: Example of a function for defining, fitting and evaluating a 1D CNN model.

There is nothing special about the network structure or chosen hyperparameters; they are
just a starting point for this problem.

24.3.3 Summarize Results

We cannot judge the skill of the model from a single evaluation. The reason for this is that
neural networks are stochastic, meaning that a different specific model will result when training
the same model configuration on the same data. This is a feature of the network in that it gives
the model its adaptive ability, but requires a slightly more complicated evaluation of the model.
We will repeat the evaluation of the model multiple times, then summarize the performance of
the model across each of those runs. For example, we can call evaluate model() a total of 10
times. This will result in a population of model evaluation scores that must be summarized.

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

Listing 24.8: Example of repeating a model evaluation experiment.

We can summarize the sample of scores by calculating and reporting the mean and standard
deviation of the performance. The mean gives the average accuracy of the model on the dataset,
whereas the standard deviation gives the average variance of the accuracy from the mean. The
function summarize results() below summarizes the results of a run.

# summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

Listing 24.9: Example of a function for summarizing model performance.

We can bundle up the repeated evaluation, gathering of results, and summarization of results
into a main function for the experiment, called run experiment(), listed below. By default,
the model is evaluated 10 times before the performance of the model is reported.
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# run an experiment

def run_experiment(repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

# summarize results

summarize_results(scores)

Listing 24.10: Example of a function for driving the experiment.

24.3.4 Complete Example

Now that we have all of the pieces, we can tie them together into a worked example. The
complete code listing is provided below.

# cnn model for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()
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# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

verbose, epochs, batch_size = 0, 10, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

# summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

# run an experiment
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def run_experiment(repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

# summarize results

summarize_results(scores)

# run the experiment

run_experiment()

Listing 24.11: Example of evaluating a 1D CNN model for activity recognition.

Running the example first loads the dataset. The models are created and evaluated and a
debug message is printed for each. Finally, the sample of scores is printed followed by the mean
and standard deviation. We can see that the model performed well achieving a classification
accuracy of about 90.9% trained on the raw dataset, with a standard deviation of about 1.3.
This is a good result, considering that the original paper published a result of 89%, trained on
the dataset with heavy domain-specific feature engineering, not the raw dataset.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

>#1: 91.347

>#2: 91.551

>#3: 90.804

>#4: 90.058

>#5: 89.752

>#6: 90.940

>#7: 91.347

>#8: 87.547

>#9: 92.637

>#10: 91.890

[91.34713267729894, 91.55072955548015, 90.80420766881574, 90.05768578215134,

89.75229046487954, 90.93993892093654, 91.34713267729894, 87.54665761791652,

92.63657957244655, 91.89005768578215]

Accuracy: 90.787% (+/-1.341)

Listing 24.12: Example output from evaluating a 1D CNN model for activity recognition.

Now that we have seen how to load the data and fit a 1D CNN model, we can investigate
whether we can further lift the skill of the model with some hyperparameter tuning.

24.4 Tuned CNN Model

In this section, we will tune the model in an effort to further improve performance on the
problem. We will look at three main areas:
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1. Data Preparation

2. Number of Filters

3. Size of Kernel

24.4.1 Data Preparation

In the previous section, we did not perform any data preparation. We used the data as-is. Each
of the main sets of data (body acceleration, body gyroscopic, and total acceleration) have been
scaled to the range -1, 1. It is not clear if the data was scaled per-subject or across all subjects.
One possible transform that may result in an improvement is to standardize the observations
prior to fitting a model.

Standardization refers to shifting the distribution of each variable such that it has a mean of
zero and a standard deviation of 1. It really only makes sense if the distribution of each variable
is Gaussian. We can quickly check the distribution of each variable by plotting a histogram of
each variable in the training dataset. A minor difficulty in this is that the data has been split
into windows of 128 time steps, with a 50% overlap. Therefore, in order to get a fair idea of the
data distribution, we must first remove the duplicated observations (the overlap), then remove
the windowing of the data.

We can do this using NumPy, first slicing the array and only keeping the second half of each
window, then flattening the windows into a long vector for each variable. This is quick and dirty
and does mean that we lose the data in the first half of the first window.

# remove overlap

cut = int(trainX.shape[1] / 2)

longX = trainX[:, -cut:, :]

# flatten windows

longX = longX.reshape((longX.shape[0] * longX.shape[1], longX.shape[2]))

Listing 24.13: Example of flattening the window data.

The complete example of loading the data, flattening it, and plotting a histogram for each
of the nine variables is listed below.

# plot distributions for the har dataset

from numpy import dstack

from pandas import read_csv

from keras.utils import to_categorical

from matplotlib import pyplot

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension
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loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy

# plot a histogram of each variable in the dataset

def plot_variable_distributions(trainX):

# remove overlap

cut = int(trainX.shape[1] / 2)

longX = trainX[:, -cut:, :]

# flatten windows

longX = longX.reshape((longX.shape[0] * longX.shape[1], longX.shape[2]))

pyplot.figure()

for i in range(longX.shape[1]):

# create figure

ax = pyplot.subplot(longX.shape[1], 1, i+1)

ax.set_xlim(-1, 1)

# create histogram

pyplot.hist(longX[:, i], bins=100)

# simplify axis remove clutter

pyplot.yticks([])

pyplot.xticks([-1,0,1])

pyplot.show()
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# load data

trainX, trainy, testX, testy = load_dataset()

# plot histograms

plot_variable_distributions(trainX)

Listing 24.14: Example of plotting histograms of all data for each variable.

Running the example creates a figure with nine histogram plots, one for each variable in
the training dataset. The order of the plots matches the order in which the data was loaded,
specifically:

1. Total Acceleration x

2. Total Acceleration y

3. Total Acceleration z

4. Body Acceleration x

5. Body Acceleration y

6. Body Acceleration z

7. Body Gyroscope x

8. Body Gyroscope y

9. Body Gyroscope z

We can see that each variable has a Gaussian-like distribution, except perhaps the first
variable (Total Acceleration x). The distributions of total acceleration data is flatter than the
body data, which is more pointed. We could explore using a power transform on the data to
make the distributions more Gaussian, although this is left as an exercise.
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Figure 24.1: Histograms of each variable in the training data set.

The data is sufficiently Gaussian-like to explore whether a standardization transform will
help the model extract salient signal from the raw observations. The function below named
scale data() can be used to standardize the data prior to fitting and evaluating the model.
The StandardScaler scikit-learn class will be used to perform the transform. It is first fit on the
training data (e.g. to find the mean and standard deviation for each variable), then applied to
the train and test sets. The standardization is optional, so we can apply the process and compare
the results to the same code path without the standardization in a controlled experiment.

# standardize data

def scale_data(trainX, testX, standardize):

# remove overlap

cut = int(trainX.shape[1] / 2)

longX = trainX[:, -cut:, :]

# flatten windows

longX = longX.reshape((longX.shape[0] * longX.shape[1], longX.shape[2]))

# flatten train and test

flatTrainX = trainX.reshape((trainX.shape[0] * trainX.shape[1], trainX.shape[2]))

flatTestX = testX.reshape((testX.shape[0] * testX.shape[1], testX.shape[2]))

# standardize

if standardize:

s = StandardScaler()

# fit on training data

s.fit(longX)
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# apply to training and test data

longX = s.transform(longX)

flatTrainX = s.transform(flatTrainX)

flatTestX = s.transform(flatTestX)

# reshape

flatTrainX = flatTrainX.reshape((trainX.shape))

flatTestX = flatTestX.reshape((testX.shape))

return flatTrainX, flatTestX

Listing 24.15: Example of a function to standardize the dataset.

We can update the evaluate model() function to take a parameter, then use this parameter
to decide whether or not to perform the standardization.

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy, param):

verbose, epochs, batch_size = 0, 10, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

# scale data

trainX, testX = scale_data(trainX, testX, param)

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

Listing 24.16: Example of a function to evaluate a model with parameterized data
standardization.

We can also update the run experiment() to repeat the experiment 10 times for each param-
eter; in this case, only two parameters will be evaluated [False, True] for no standardization
and standardization respectively.

# run an experiment

def run_experiment(params, repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# test each parameter

all_scores = list()

for p in params:

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy, p)

score = score * 100.0

print('>p=%d #%d: %.3f' % (p, r+1, score))

scores.append(score)
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all_scores.append(scores)

# summarize results

summarize_results(all_scores, params)

Listing 24.17: Example of a function to run the experiment with parameterization.

This will result in two samples of results that can be compared. We will update the
summarize results() function to summarize the sample of results for each configuration
parameter and to create a box plot to compare each sample of results.

# summarize scores

def summarize_results(scores, params):

print(scores, params)

# summarize mean and standard deviation

for i in range(len(scores)):

m, s = mean(scores[i]), std(scores[i])

print('Param=%d: %.3f%% (+/-%.3f)' % (params[i], m, s))

# box plot of scores

pyplot.boxplot(scores, labels=params)

pyplot.savefig('exp_cnn_standardize.png')

Listing 24.18: Example of a function to summarize the results of a parameterized experiment.

These updates will allow us to directly compare the results of a model fit as before and a
model fit on the dataset after it has been standardized. It is also a generic change that will
allow us to evaluate and compare the results of other sets of parameters in the following sections.
The complete code listing is provided below.

# cnn model with standardization for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from matplotlib import pyplot

from sklearn.preprocessing import StandardScaler

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded
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# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy

# standardize data

def scale_data(trainX, testX, standardize):

# remove overlap

cut = int(trainX.shape[1] / 2)

longX = trainX[:, -cut:, :]

# flatten windows

longX = longX.reshape((longX.shape[0] * longX.shape[1], longX.shape[2]))

# flatten train and test

flatTrainX = trainX.reshape((trainX.shape[0] * trainX.shape[1], trainX.shape[2]))

flatTestX = testX.reshape((testX.shape[0] * testX.shape[1], testX.shape[2]))

# standardize

if standardize:

s = StandardScaler()

# fit on training data

s.fit(longX)

# apply to training and test data

longX = s.transform(longX)

flatTrainX = s.transform(flatTrainX)

flatTestX = s.transform(flatTestX)

# reshape

flatTrainX = flatTrainX.reshape((trainX.shape))



24.4. Tuned CNN Model 507

flatTestX = flatTestX.reshape((testX.shape))

return flatTrainX, flatTestX

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy, param):

verbose, epochs, batch_size = 0, 10, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

# scale data

trainX, testX = scale_data(trainX, testX, param)

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

# summarize scores

def summarize_results(scores, params):

print(scores, params)

# summarize mean and standard deviation

for i in range(len(scores)):

m, s = mean(scores[i]), std(scores[i])

print('Param=%s: %.3f%% (+/-%.3f)' % (params[i], m, s))

# boxplot of scores

pyplot.boxplot(scores, labels=params)

pyplot.savefig('exp_cnn_standardize.png')

# run an experiment

def run_experiment(params, repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# test each parameter

all_scores = list()

for p in params:

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy, p)

score = score * 100.0

print('>p=%s #%d: %.3f' % (p, r+1, score))

scores.append(score)

all_scores.append(scores)

# summarize results

summarize_results(all_scores, params)

# run the experiment

n_params = [False, True]
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run_experiment(n_params)

Listing 24.19: Example of evaluating a CNN with and without data standardization.

Running the example may take a while, depending on your hardware. The performance
is printed for each evaluated model. At the end of the run, the performance of each of the
tested configurations is summarized showing the mean and the standard deviation. We can see
that it does look like standardizing the dataset prior to modeling does result in a small lift in
performance from about 90.4% accuracy (close to what we saw in the previous section) to about
91.5% accuracy.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

>p=False #1: 91.483

>p=False #2: 91.245

>p=False #3: 90.838

>p=False #4: 89.243

>p=False #5: 90.193

>p=False #6: 90.465

>p=False #7: 90.397

>p=False #8: 90.567

>p=False #9: 88.938

>p=False #10: 91.144

>p=True #1: 92.908

>p=True #2: 90.940

>p=True #3: 92.297

>p=True #4: 91.822

>p=True #5: 92.094

>p=True #6: 91.313

>p=True #7: 91.653

>p=True #8: 89.141

>p=True #9: 91.110

>p=True #10: 91.890

[[91.48286392941975, 91.24533423820834, 90.83814048184594, 89.24329826942655,

90.19341703427214, 90.46487953851374, 90.39701391245333, 90.56667797760434,

88.93790295215473, 91.14353579911774], [92.90804207668816, 90.93993892093654,

92.29725144214456, 91.82219205972176, 92.09365456396336, 91.31319986426874,

91.65252799457076, 89.14149983033593, 91.10960298608755, 91.89005768578215]] [False,

True]

Param=False: 90.451% (+/-0.785)

Param=True: 91.517% (+/-0.965)

Listing 24.20: Example output from evaluating a CNN with and without data standardization.

A box and whisker plot of the results is also created. This allows the two samples of results
to be compared in a nonparametric way, showing the median and the middle 50% of each
sample. We can see that the distribution of results with standardization is quite different from
the distribution of results without standardization. This is likely a real effect.
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Figure 24.2: Box and whisker plot of 1D CNN with and without standardization.

24.4.2 Number of Filters

Now that we have an experimental framework, we can explore varying other hyperparameters
of the model. An important hyperparameter for the CNN is the number of filter maps. We can
experiment with a range of different values, from less to many more than the 64 used in the
first model that we developed. Specifically, we will try the following numbers of feature maps:

# define configuration

n_params = [8, 16, 32, 64, 128, 256]

Listing 24.21: Example of a configuration for the number of filter maps.

We can use the same code from the previous section and update the evaluate model()

function to use the provided parameter as the number of filters in the Conv1D layers. We can
also update the summarize results() function to save the box plot as exp cnn filters.png.
The complete code example is listed below.

# cnn model with filters for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from matplotlib import pyplot
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from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy
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# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy, n_filters):

verbose, epochs, batch_size = 0, 10, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

model = Sequential()

model.add(Conv1D(filters=n_filters, kernel_size=3, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=n_filters, kernel_size=3, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

# summarize scores

def summarize_results(scores, params):

print(scores, params)

# summarize mean and standard deviation

for i in range(len(scores)):

m, s = mean(scores[i]), std(scores[i])

print('Param=%d: %.3f%% (+/-%.3f)' % (params[i], m, s))

# boxplot of scores

pyplot.boxplot(scores, labels=params)

pyplot.savefig('exp_cnn_filters.png')

# run an experiment

def run_experiment(params, repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# test each parameter

all_scores = list()

for p in params:

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy, p)

score = score * 100.0

print('>p=%d #%d: %.3f' % (p, r+1, score))

scores.append(score)

all_scores.append(scores)

# summarize results

summarize_results(all_scores, params)

# run the experiment

n_params = [8, 16, 32, 64, 128, 256]

run_experiment(n_params)

Listing 24.22: Example of evaluating a CNN with different numbers of filter maps.
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Running the example repeats the experiment for each of the specified number of filters. At
the end of the run, a summary of the results with each number of filters is presented. We can
see perhaps a trend of increasing average performance with the increase in the number of filter
maps. The variance stays pretty constant, and perhaps 128 feature maps might be a good
configuration for the network.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

Param=8: 89.148% (+/-0.790)

Param=16: 90.383% (+/-0.613)

Param=32: 90.356% (+/-1.039)

Param=64: 90.098% (+/-0.615)

Param=128: 91.032% (+/-0.702)

Param=256: 90.706% (+/-0.997)

Listing 24.23: Example output from evaluating a CNN with different numbers of filter maps.

A box and whisker plot of the results is also created, allowing the distribution of results with
each number of filters to be compared. From the plot, we can see the trend upward in terms
of median classification accuracy (orange line on the box) with the increase in the number of
feature maps. We do see a dip at 64 feature maps (the default or baseline in our experiments),
which is surprising, and perhaps a plateau in accuracy across 32, 128, and 256 filter maps.
Perhaps 32 would be a more stable configuration.
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Figure 24.3: Box and whisker plot of 1D CNN with different numbers of filter maps.

24.4.3 Size of Kernel

The size of the kernel is another important hyperparameter of the 1D CNN to tune. The kernel
size controls the number of time steps consider in each read of the input sequence, that is then
projected onto the feature map (via the convolutional process). A large kernel size means a less
rigorous reading of the data, but may result in a more generalized snapshot of the input. We
can use the same experimental setup and test a suite of different kernel sizes in addition to the
default of three time steps. The full list of values is as follows:

# define configuration

n_params = [2, 3, 5, 7, 11]

Listing 24.24: Example of a configuration for different sized kernels.

The complete code listing is provided below:

# cnn model vary kernel size for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from matplotlib import pyplot

from keras.models import Sequential
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from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy
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# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy, n_kernel):

verbose, epochs, batch_size = 0, 15, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=n_kernel, activation='relu',

input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=64, kernel_size=n_kernel, activation='relu'))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

# summarize scores

def summarize_results(scores, params):

print(scores, params)

# summarize mean and standard deviation

for i in range(len(scores)):

m, s = mean(scores[i]), std(scores[i])

print('Param=%d: %.3f%% (+/-%.3f)' % (params[i], m, s))

# boxplot of scores

pyplot.boxplot(scores, labels=params)

pyplot.savefig('exp_cnn_kernel.png')

# run an experiment

def run_experiment(params, repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# test each parameter

all_scores = list()

for p in params:

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy, p)

score = score * 100.0

print('>p=%d #%d: %.3f' % (p, r+1, score))

scores.append(score)

all_scores.append(scores)

# summarize results

summarize_results(all_scores, params)

# run the experiment

n_params = [2, 3, 5, 7, 11]

run_experiment(n_params)

Listing 24.25: Example of evaluating a CNN with different sized kernels.

Running the example tests each kernel size in turn. The results are summarized at the end
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of the run. We can see a general increase in model performance with the increase in kernel
size. The results suggest a kernel size of 5 might be good with a mean skill of about 91.8%, but
perhaps a size of 7 or 11 may also be just as good with a smaller standard deviation.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

...

Param=2: 90.176% (+/-0.724)

Param=3: 90.275% (+/-1.277)

Param=5: 91.853% (+/-1.249)

Param=7: 91.347% (+/-0.852)

Param=11: 91.456% (+/-0.743)

Listing 24.26: Example output from evaluating a CNN with different sized kernels.

A box and whisker plot of the results is also created. The results suggest that a larger kernel
size does appear to result in better accuracy and that perhaps a kernel size of 7 provides a good
balance between good performance and low variance.

Figure 24.4: Box and whisker plot of 1D CNN with different numbers of kernel sizes.

This is just the beginning of tuning the model, although we have focused on perhaps the
more important elements. It might be interesting to explore combinations of some of the above
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findings to see if performance can be lifted even further. It may also be interesting to increase
the number of repeats from 10 to 30 or more to see if it results in more stable findings.

24.5 Multi-headed CNN Model

Another popular approach with 1D CNNs is to have a multi-headed model, where each head of
the model reads the input time steps using a different sized kernel. For example, a three-headed
model may have three different kernel sizes of 3, 5, 11, allowing the model to read and interpret
the sequence data at three different resolutions. The interpretations from all three heads are then
concatenated within the model and interpreted by a fully-connected layer before a prediction is
made.

We can implement a multi-headed 1D CNN using the Keras functional API. The updated
version of the evaluate model() function is listed below that creates a three-headed 1D CNN
model. We can see that each head of the model is the same structure, although the kernel size
is varied. The three heads then feed into a single merge layer before being interpreted prior to
making a prediction.

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

verbose, epochs, batch_size = 0, 10, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

# head 1

inputs1 = Input(shape=(n_timesteps,n_features))

conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(inputs1)

drop1 = Dropout(0.5)(conv1)

pool1 = MaxPooling1D(pool_size=2)(drop1)

flat1 = Flatten()(pool1)

# head 2

inputs2 = Input(shape=(n_timesteps,n_features))

conv2 = Conv1D(filters=64, kernel_size=5, activation='relu')(inputs2)

drop2 = Dropout(0.5)(conv2)

pool2 = MaxPooling1D(pool_size=2)(drop2)

flat2 = Flatten()(pool2)

# head 3

inputs3 = Input(shape=(n_timesteps,n_features))

conv3 = Conv1D(filters=64, kernel_size=11, activation='relu')(inputs3)

drop3 = Dropout(0.5)(conv3)

pool3 = MaxPooling1D(pool_size=2)(drop3)

flat3 = Flatten()(pool3)

# merge

merged = concatenate([flat1, flat2, flat3])

# interpretation

dense1 = Dense(100, activation='relu')(merged)

outputs = Dense(n_outputs, activation='softmax')(dense1)

model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)

# save a plot of the model

plot_model(model, show_shapes=True, to_file='multiheaded.png')

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit([trainX,trainX,trainX], trainy, epochs=epochs, batch_size=batch_size,

verbose=verbose)

# evaluate model

_, accuracy = model.evaluate([testX,testX,testX], testy, batch_size=batch_size, verbose=0)
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return accuracy

Listing 24.27: Example of a function to define a multi-headed CNN model.

When the model is created, a plot of the network architecture is created; provided below, it
gives a clear idea of how the constructed model fits together.

Note: the call to plot model() requires that pygraphviz and pydot are installed. If this is a
problem, you can comment out this line.

Figure 24.5: Plot of the Multi-headed 1D Convolutional Neural Network.

Other aspects of the model could be varied across the heads, such as the number of filters or
even the preparation of the data itself. The complete code example with the multi-headed 1D
CNN is listed below.

# multi-headed cnn model for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from keras.utils import to_categorical

from keras.utils.vis_utils import plot_model



24.5. Multi-headed CNN Model 519

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.layers.merge import concatenate

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)
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return trainX, trainy, testX, testy

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

verbose, epochs, batch_size = 0, 10, 32

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

# head 1

inputs1 = Input(shape=(n_timesteps,n_features))

conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(inputs1)

drop1 = Dropout(0.5)(conv1)

pool1 = MaxPooling1D(pool_size=2)(drop1)

flat1 = Flatten()(pool1)

# head 2

inputs2 = Input(shape=(n_timesteps,n_features))

conv2 = Conv1D(filters=64, kernel_size=5, activation='relu')(inputs2)

drop2 = Dropout(0.5)(conv2)

pool2 = MaxPooling1D(pool_size=2)(drop2)

flat2 = Flatten()(pool2)

# head 3

inputs3 = Input(shape=(n_timesteps,n_features))

conv3 = Conv1D(filters=64, kernel_size=11, activation='relu')(inputs3)

drop3 = Dropout(0.5)(conv3)

pool3 = MaxPooling1D(pool_size=2)(drop3)

flat3 = Flatten()(pool3)

# merge

merged = concatenate([flat1, flat2, flat3])

# interpretation

dense1 = Dense(100, activation='relu')(merged)

outputs = Dense(n_outputs, activation='softmax')(dense1)

model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)

# save a plot of the model

plot_model(model, show_shapes=True, to_file='multiheaded.png')

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit([trainX,trainX,trainX], trainy, epochs=epochs, batch_size=batch_size,

verbose=verbose)

# evaluate model

_, accuracy = model.evaluate([testX,testX,testX], testy, batch_size=batch_size, verbose=0)

return accuracy

# summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

# run an experiment

def run_experiment(repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))
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scores.append(score)

# summarize results

summarize_results(scores)

# run the experiment

run_experiment()

Listing 24.28: Example of evaluating a multi-headed CNN model.

Running the example prints the performance of the model each repeat of the experiment and
then summarizes the estimated score as the mean and standard deviation, as we did in the first
case with the simple 1D CNN. We can see that the average performance of the model is about
91.6% classification accuracy with a standard deviation of about 0.8. This example may be used
as the basis for exploring a variety of other models that vary different model hyperparameters
and even different data preparation schemes across the input heads.

It would not be an apples-to-apples comparison to compare this result with a single-headed
CNN given the relative tripling of the resources in this model. Perhaps an apples-to-apples
comparison would be a model with the same architecture and the same number of filters across
each input head of the model.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

>#1: 91.788

>#2: 92.942

>#3: 91.551

>#4: 91.415

>#5: 90.974

>#6: 91.992

>#7: 92.162

>#8: 89.888

>#9: 92.671

>#10: 91.415

[91.78825924669155, 92.94197488971835, 91.55072955548015, 91.41499830335935,

90.97387173396675, 91.99185612487275, 92.16152019002375, 89.88802171700034,

92.67051238547675, 91.41499830335935]

Accuracy: 91.680% (+/-0.823)

Listing 24.29: Example output from evaluating a multi-headed CNN model.

24.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Number of Variables. Run experiments to see if all nine variables are required in the
CNN or if it can do as well or better with a subset, such as just total acceleration.

� Date Preparation. Explore other data preparation schemes such as data normalization
and perhaps normalization after standardization.
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� Network Architecture. Explore other network architectures, such as deeper CNN
architectures and deeper fully-connected layers for interpreting the CNN input features.

� Diagnostics. Use simple learning curve diagnostics to interpret how the model is learning
over the epochs and whether more regularization, different learning rates, or different
batch sizes or numbers of epochs may result in a better performing or more stable model.

If you explore any of these extensions, I’d love to know.

24.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Getting started with the Keras functional API.
https://keras.io/getting-started/functional-api-guide/

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Pooling Layers API.
https://keras.io/layers/pooling/

24.8 Summary

In this tutorial, you discovered how to develop one-dimensional convolutional neural networks
for time series classification on the problem of human activity recognition. Specifically, you
learned:

� How to load and prepare the data for a standard human activity recognition dataset and
develop a single 1D CNN model that achieves excellent performance on the raw data.

� How to further tune the performance of the model, including data transformation, filter
maps, and kernel sizes.

� How to develop a sophisticated multi-headed one-dimensional convolutional neural network
model that provides an ensemble-like result.

24.8.1 Next

In the next lesson, you will discover how to develop Recurrent Neural Network models for
predicting human activities from a stream of smartphone accelerometer data.

https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/


Chapter 25

How to Develop LSTMs for Human
Activity Recognition

Human activity recognition is the problem of classifying sequences of accelerometer data
recorded by specialized harnesses or smartphones into known well-defined movements. Classical
approaches to the problem involve hand crafting features from the time series data based on
fixed-sized windows and training machine learning models, such as ensembles of decision trees.
The difficulty is that this feature engineering requires strong expertise in the field. Recently,
deep learning methods such as recurrent neural networks like as LSTMs and variations that
make use of one-dimensional convolutional neural networks or CNNs have been shown to provide
state-of-the-art results on challenging activity recognition tasks with little or no data feature
engineering, instead using feature learning on raw data. In this tutorial, you will discover
three recurrent neural network architectures for modeling an activity recognition time series
classification problem. After completing this tutorial, you will know:

� How to develop a Long Short-Term Memory Recurrent Neural Network for human activity
recognition.

� How to develop a one-dimensional Convolutional Neural Network LSTM, or CNN-LSTM,
model.

� How to develop a one-dimensional Convolutional LSTM, or ConvLSTM, model for the
same problem.

Let’s get started.

25.1 Tutorial Overview

This tutorial is divided into four parts; they are:

1. Activity Recognition Using Smartphones Dataset

2. LSTM Model

3. CNN-LSTM Model

4. ConvLSTM Model

523
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25.2 Activity Recognition Using Smartphones Dataset

Human Activity Recognition, or HAR for short, is the problem of predicting what a person is
doing based on a trace of their movement using sensors. A standard human activity recognition
dataset is the Activity Recognition Using Smartphones made available in 2012. For more
information on this dataset, see Chapter 22. The data is provided as a single zip file that is
about 58 megabytes in size. A direct for downloading the dataset is provided below:

� HAR Smartphones.zip 1

Download the dataset and unzip all files into a new directory in your current working
directory named HARDataset.

25.3 LSTM Model

In this section, we will develop a Long Short-Term Memory network model (LSTM) for the
human activity recognition dataset. LSTM network models are a type of recurrent neural
network that are able to learn and remember over long sequences of input data. They are
intended for use with data that is comprised of long sequences of data, up to 200 to 400 time
steps. They may be a good fit for this problem. The model can support multiple parallel
sequences of input data, such as each axis of the accelerometer and gyroscope data. The model
learns to extract features from sequences of observations and how to map the internal features
to different activity types.

The benefit of using LSTMs for sequence classification is that they can learn from the raw
time series data directly, and in turn do not require domain expertise to manually engineer
input features. The model can learn an internal representation of the time series data and
ideally achieve comparable performance to models fit on a version of the dataset with engineered
features. For more information on LSTMs for time series forecasting, see Chapter 9. This
section is divided into four parts; they are:

1. Load Data

2. Fit and Evaluate Model

3. Summarize Results

4. Complete Example

Some of the details on loading and preparing the dataset were covered in Chapters 22 and
23. There is some repetition here in order to customize the data preparation and prediction
evaluation for deep learning models.

1https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip

https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
https://raw.githubusercontent.com/jbrownlee/Datasets/master/HAR_Smartphones.zip
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25.3.1 Load Data

The first step is to load the raw dataset into memory. There are three main signal types in the
raw data: total acceleration, body acceleration, and body gyroscope. Each has three axes of
data. This means that there are a total of nine variables for each time step. Further, each series
of data has been partitioned into overlapping windows of 2.65 seconds of data, or 128 time steps.
These windows of data correspond to the windows of engineered features (rows) in the previous
section.

This means that one row of data has (128 × 9), or 1,152, elements. This is a little less than
double the size of the 561 element vectors in the previous section and it is likely that there
is some redundant data. The signals are stored in the /Inertial Signals/ directory under
the train and test subdirectories. Each axis of each signal is stored in a separate file, meaning
that each of the train and test datasets have nine input files to load and one output file to load.
We can batch the loading of these files into groups given the consistent directory structures
and file naming conventions. The input data is in CSV format where columns are separated by
whitespace. Each of these files can be loaded as a NumPy array. The load file() function
below loads a dataset given the file path to the file and returns the loaded data as a NumPy
array.

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

Listing 25.1: Example of a function for loading a single file.

We can then load all data for a given group (train or test) into a single three-dimensional
NumPy array, where the dimensions of the array are [samples, timesteps, features]. To
make this clearer, there are 128 time steps and nine features, where the number of samples is the
number of rows in any given raw signal data file. The load group() function below implements
this behavior. The dstack() NumPy function allows us to stack each of the loaded 3D arrays
into a single 3D array where the variables are separated on the third dimension (features).

# load a list of files into a 3D array of [samples, timesteps, features]

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

Listing 25.2: Example of a function for loading a group of files.

We can use this function to load all input signal data for a given group, such as train or test.
The load dataset group() function below loads all input signal data and the output data for
a single group using the consistent naming conventions between the train and test directories.

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()
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# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

Listing 25.3: Example of a function for loading a dataset group of files.

Finally, we can load each of the train and test datasets. The output data is defined as an
integer for the class number. We must one hot encode these class integers so that the data is
suitable for fitting a neural network multiclass classification model. We can do this by calling
the to categorical() Keras function. The load dataset() function below implements this
behavior and returns the train and test X and y elements ready for fitting and evaluating the
defined models.

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

print(trainX.shape, trainy.shape)

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

print(testX.shape, testy.shape)

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

print(trainX.shape, trainy.shape, testX.shape, testy.shape)

return trainX, trainy, testX, testy

Listing 25.4: Example of a function for loading the entire dataset.

25.3.2 Fit and Evaluate Model

Now that we have the data loaded into memory ready for modeling, we can define, fit, and
evaluate an LSTM model. We can define a function named evaluate model() that takes the
train and test dataset, fits a model on the training dataset, evaluates it on the test dataset, and
returns an estimate of the model’s performance. First, we must define the LSTM model using
the Keras deep learning library. The model requires a three-dimensional input with [samples,

timesteps, features].
This is exactly how we have loaded the data, where one sample is one window of the time

series data, each window has 128 time steps, and a time step has nine variables or features. The
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output for the model will be a six-element vector containing the probability of a given window
belonging to each of the six activity types. The input and output dimensions are required when
fitting the model, and we can extract them from the provided training dataset.

# define data shape

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

Listing 25.5: Example of a model shape based on data shape.

he model is defined as a Sequential Keras model, for simplicity.
We will define the model as having a single LSTM hidden layer. This is followed by a dropout

layer intended to reduce overfitting of the model to the training data. Finally, a dense fully
connected layer is used to interpret the features extracted by the LSTM hidden layer, before a
final output layer is used to make predictions. The efficient Adam version of stochastic gradient
descent will be used to optimize the network, and the categorical cross entropy loss function
will be used given that we are learning a multiclass classification problem. The definition of the
model is listed below.

# define the lstm model

model = Sequential()

model.add(LSTM(100, input_shape=(n_timesteps,n_features)))

model.add(Dropout(0.5))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 25.6: Example of defining an LSTM model.

The model is fit for a fixed number of epochs, in this case 15, and a batch size of 64 samples
will be used, where 64 windows of data will be exposed to the model before the weights of
the model are updated. Once the model is fit, it is evaluated on the test dataset and the
accuracy of the fit model on the test dataset is returned. Note, it is common to not shuffle
sequence data when fitting an LSTM. Here we do shuffle the windows of input data during
training (the default). In this problem, we are interested in harnessing the LSTMs ability to
learn and extract features across the time steps in a window, not across windows. The complete
evaluate model() function is listed below.

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

verbose, epochs, batch_size = 0, 15, 64

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

model = Sequential()

model.add(LSTM(100, input_shape=(n_timesteps,n_features)))

model.add(Dropout(0.5))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

Listing 25.7: Example of a function for defining, fitting and evaluating an LSTM model.
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There is nothing special about the network structure or chosen hyperparameters, they are
just a starting point for this problem.

25.3.3 Summarize Results

We cannot judge the skill of the model from a single evaluation. The reason for this is that
neural networks are stochastic, meaning that a different specific model will result when training
the same model configuration on the same data. This is a feature of the network in that it gives
the model its adaptive ability, but requires a slightly more complicated evaluation of the model.
We will repeat the evaluation of the model multiple times, then summarize the performance of
the model across each of those runs. For example, we can call evaluate model() a total of 10
times. This will result in a population of model evaluation scores that must be summarized.

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

Listing 25.8: Example of repeating a model evaluation experiment.

We can summarize the sample of scores by calculating and reporting the mean and standard
deviation of the performance. The mean gives the average accuracy of the model on the dataset,
whereas the standard deviation gives the average variance of the accuracy from the mean. The
function summarize results() below summarizes the results of a run.

# summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

Listing 25.9: Example of a function for summarizing model performance.

We can bundle up the repeated evaluation, gathering of results, and summarization of results
into a main function for the experiment, called run experiment(), listed below. By default,
the model is evaluated 10 times before the performance of the model is reported.

# run an experiment

def run_experiment(repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

# summarize results

summarize_results(scores)

Listing 25.10: Example of a function for driving the experiment.
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25.3.4 Complete Example

Now that we have all of the pieces, we can tie them together into a worked example. The
complete code listing is provided below.

# lstm model for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import LSTM

from keras.utils import to_categorical

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test
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testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

verbose, epochs, batch_size = 0, 15, 64

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

model = Sequential()

model.add(LSTM(100, input_shape=(n_timesteps,n_features)))

model.add(Dropout(0.5))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

# summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

# run an experiment

def run_experiment(repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

# summarize results

summarize_results(scores)

# run the experiment

run_experiment()

Listing 25.11: Example of evaluating an LSTM model for activity recognition.

Running the example first loads the dataset. The models are created and evaluated and a
debug message is printed for each. Finally, the sample of scores is printed, followed by the mean
and standard deviation. We can see that the model performed well, achieving a classification
accuracy of about 89.7% trained on the raw dataset, with a standard deviation of about 1.3.
This is a good result, considering that the original paper published a result of 89%, trained on



25.4. CNN-LSTM Model 531

the dataset with heavy domain-specific feature engineering, not the raw dataset.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

>#1: 90.058

>#2: 85.918

>#3: 90.974

>#4: 89.515

>#5: 90.159

>#6: 91.110

>#7: 89.718

>#8: 90.295

>#9: 89.447

>#10: 90.024

[90.05768578215134, 85.91788259246692, 90.97387173396675, 89.51476077366813,

90.15948422124194, 91.10960298608755, 89.71835765184933, 90.29521547336275,

89.44689514760775, 90.02375296912113]

Accuracy: 89.722% (+/-1.371)

Listing 25.12: Example output from evaluating an LSTM model for activity recognition.

Now that we have seen how to develop an LSTM model for time series classification, let’s
look at how we can develop a more sophisticated CNN-LSTM model.

25.4 CNN-LSTM Model

The CNN-LSTM architecture involves using Convolutional Neural Network (CNN) layers for
feature extraction on input data combined with LSTMs to support sequence prediction. For
more information on the use of CNN-LSTM models for time series forecasting, see Chapter 9.
The CNN-LSTM model will read subsequences of the main sequence in as blocks, extract
features from each block, then allow the LSTM to interpret the features extracted from each
block. One approach to implementing this model is to split each window of 128 time steps into
subsequences for the CNN model to process. For example, the 128 time steps in each window
can be split into four subsequences of 32 time steps.

# reshape data into time steps of sub-sequences

n_steps, n_length = 4, 32

trainX = trainX.reshape((trainX.shape[0], n_steps, n_length, n_features))

testX = testX.reshape((testX.shape[0], n_steps, n_length, n_features))

Listing 25.13: Example of reshaping the window data into subsequences.

We can then define a CNN model that expects to read in sequences with a length of 32 time
steps and nine features. The entire CNN model can be wrapped in a TimeDistributed layer
to allow the same CNN model to read in each of the four subsequences in the window. The
extracted features are then flattened and provided to the LSTM model to read, extracting its
own features before a final mapping to an activity is made.
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# define cnn-lstm model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu'),

input_shape=(None,n_length,n_features)))

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu')))

model.add(TimeDistributed(Dropout(0.5)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(100))

model.add(Dropout(0.5))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

Listing 25.14: Example of defining a CNN-LSTM model.

It is common to use two consecutive CNN layers followed by dropout and a max pooling
layer, and that is the simple structure used in the this CNN-LSTM model. The updated
evaluate model() is listed below.

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

# define model

verbose, epochs, batch_size = 0, 25, 64

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

# reshape data into time steps of sub-sequences

n_steps, n_length = 4, 32

trainX = trainX.reshape((trainX.shape[0], n_steps, n_length, n_features))

testX = testX.reshape((testX.shape[0], n_steps, n_length, n_features))

# define model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu'),

input_shape=(None,n_length,n_features)))

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu')))

model.add(TimeDistributed(Dropout(0.5)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(100))

model.add(Dropout(0.5))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

Listing 25.15: Example of a function for defining, fitting and evaluating a CNN-LSTM model.

We can evaluate this model as we did the straight LSTM model in the previous section. The
complete code listing is provided below.

# cnn lstm model for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack
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from pandas import read_csv

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers import LSTM

from keras.layers import TimeDistributed

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded

# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y
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trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

# define model

verbose, epochs, batch_size = 0, 25, 64

n_features, n_outputs = trainX.shape[2], trainy.shape[1]

# reshape data into time steps of sub-sequences

n_steps, n_length = 4, 32

trainX = trainX.reshape((trainX.shape[0], n_steps, n_length, n_features))

testX = testX.reshape((testX.shape[0], n_steps, n_length, n_features))

# define model

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu'),

input_shape=(None,n_length,n_features)))

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=3, activation='relu')))

model.add(TimeDistributed(Dropout(0.5)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(100))

model.add(Dropout(0.5))

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)

return accuracy

# summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

# run an experiment

def run_experiment(repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

# summarize results

summarize_results(scores)

# run the experiment

run_experiment()

Listing 25.16: Example of evaluating a CNN-LSTM model for activity recognition.
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Running the example summarizes the model performance for each of the 10 runs before
a final summary of the model’s performance on the test set is reported. We can see that the
model achieved a performance of about 90.6% with a standard deviation of about 1%.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

>#1: 91.517

>#2: 91.042

>#3: 90.804

>#4: 92.263

>#5: 89.684

>#6: 88.666

>#7: 91.381

>#8: 90.804

>#9: 89.379

>#10: 91.347

[91.51679674244994, 91.04173736002714, 90.80420766881574, 92.26331862911435,

89.68442483881914, 88.66644044791313, 91.38106549032915, 90.80420766881574,

89.37902952154734, 91.34713267729894]

Accuracy: 90.689% (+/-1.051)

Listing 25.17: Example output from evaluating a CNN-LSTM model for activity recognition.

25.5 ConvLSTM Model

A further extension of the CNN-LSTM idea is to perform the convolutions of the CNN (e.g.
how the CNN reads the input sequence data) as part of the LSTM. This combination is called
a Convolutional LSTM, or ConvLSTM for short, and like the CNN-LSTM is also used for
spatiotemporal data. The ConvLSTM2D class, by default, expects input data to have the shape:
[samples, time, rows, cols, channels]. Where each time step of data is defined as an
image of (rows × columns) data points.

In the previous section, we divided a given window of data (128 time steps) into four
subsequences of 32 time steps. We can use this same subsequence approach in defining the
ConvLSTM2D input where the number of time steps is the number of subsequences in the window,
the number of rows is 1 as we are working with one-dimensional data, and the number of
columns represents the number of time steps in the subsequence, in this case 32. For this chosen
framing of the problem, the input for the ConvLSTM2D would therefore be:

� Samples: n, for the number of windows in the dataset.

� Time: 4, for the four subsequences that we split a window of 128 time steps into.

� Rows: 1, for the one-dimensional shape of each subsequence.

� Columns: 32, for the 32 time steps in an input subsequence.

� Channels: 9, for the nine input variables.
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We can now prepare the data for the ConvLSTM2D model.

n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

# reshape into subsequences (samples, timesteps, rows, cols, channels)

n_steps, n_length = 4, 32

trainX = trainX.reshape((trainX.shape[0], n_steps, 1, n_length, n_features))

testX = testX.reshape((testX.shape[0], n_steps, 1, n_length, n_features))

Listing 25.18: Example of preparing input data for the ConvLSTM model.

The ConvLSTM2D class requires configuration both in terms of the CNN and the LSTM. This
includes specifying the number of filters (e.g. 64), the two-dimensional kernel size, in this case
(1 row and 3 columns of the subsequence time steps), and the activation function, in this case
rectified linear. As with a CNN or LSTM model, the output must be flattened into one long
vector before it can be interpreted by a dense layer.

# define convlstm model

model = Sequential()

model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',

input_shape=(n_steps, 1, n_length, n_features)))

model.add(Dropout(0.5))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

Listing 25.19: Example of defining the ConvLSTM model.

We can then evaluate the model as we did the LSTM and CNN-LSTM models before it.
The complete example is listed below.

# convlstm model for the har dataset

from numpy import mean

from numpy import std

from numpy import dstack

from pandas import read_csv

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers import ConvLSTM2D

from keras.utils import to_categorical

# load a single file as a numpy array

def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_whitespace=True)

return dataframe.values

# load a list of files and return as a 3d numpy array

def load_group(filenames, prefix=''):

loaded = list()

for name in filenames:

data = load_file(prefix + name)

loaded.append(data)

# stack group so that features are the 3rd dimension

loaded = dstack(loaded)

return loaded
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# load a dataset group, such as train or test

def load_dataset_group(group, prefix=''):

filepath = prefix + group + '/Inertial Signals/'

# load all 9 files as a single array

filenames = list()

# total acceleration

filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt',

'total_acc_z_'+group+'.txt']

# body acceleration

filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt',

'body_acc_z_'+group+'.txt']

# body gyroscope

filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt',

'body_gyro_z_'+group+'.txt']

# load input data

X = load_group(filenames, filepath)

# load class output

y = load_file(prefix + group + '/y_'+group+'.txt')

return X, y

# load the dataset, returns train and test X and y elements

def load_dataset(prefix=''):

# load all train

trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/')

# load all test

testX, testy = load_dataset_group('test', prefix + 'HARDataset/')

# zero-offset class values

trainy = trainy - 1

testy = testy - 1

# one hot encode y

trainy = to_categorical(trainy)

testy = to_categorical(testy)

return trainX, trainy, testX, testy

# fit and evaluate a model

def evaluate_model(trainX, trainy, testX, testy):

# define model

verbose, epochs, batch_size = 0, 25, 64

n_features, n_outputs = trainX.shape[2], trainy.shape[1]

# reshape into subsequences (samples, time steps, rows, cols, channels)

n_steps, n_length = 4, 32

trainX = trainX.reshape((trainX.shape[0], n_steps, 1, n_length, n_features))

testX = testX.reshape((testX.shape[0], n_steps, 1, n_length, n_features))

# define model

model = Sequential()

model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',

input_shape=(n_steps, 1, n_length, n_features)))

model.add(Dropout(0.5))

model.add(Flatten())

model.add(Dense(100, activation='relu'))

model.add(Dense(n_outputs, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)

# evaluate model

_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)
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return accuracy

# summarize scores

def summarize_results(scores):

print(scores)

m, s = mean(scores), std(scores)

print('Accuracy: %.3f%% (+/-%.3f)' % (m, s))

# run an experiment

def run_experiment(repeats=10):

# load data

trainX, trainy, testX, testy = load_dataset()

# repeat experiment

scores = list()

for r in range(repeats):

score = evaluate_model(trainX, trainy, testX, testy)

score = score * 100.0

print('>#%d: %.3f' % (r+1, score))

scores.append(score)

# summarize results

summarize_results(scores)

# run the experiment

run_experiment()

Listing 25.20: Example of evaluating a ConvLSTM model for activity recognition.

As with the prior experiments, running the model prints the performance of the model each
time it is fit and evaluated. A summary of the final model performance is presented at the end
of the run. We can see that the model does consistently perform well on the problem achieving
an accuracy of about 90%, perhaps with fewer resources than the larger CNN-LSTM model.

Note: Given the stochastic nature of the algorithm, your specific results may vary. Consider
running the example a few times.

>#1: 90.092

>#2: 91.619

>#3: 92.128

>#4: 90.533

>#5: 89.243

>#6: 90.940

>#7: 92.026

>#8: 91.008

>#9: 90.499

>#10: 89.922

[90.09161859518154, 91.61859518154056, 92.12758737699356, 90.53274516457415,

89.24329826942655, 90.93993892093654, 92.02578893790296, 91.00780454699695,

90.49881235154395, 89.92195453003053]

Accuracy: 90.801% (+/-0.886)

Listing 25.21: Example output from evaluating a ConvLSTM model for activity recognition.
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25.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Data Preparation. Consider exploring whether simple data scaling schemes can further
lift model performance, such as normalization, standardization, and power transforms.

� LSTM Variations. There are variations of the LSTM architecture that may achieve
better performance on this problem, such as stacked LSTMs and Bidirectional LSTMs.

� Hyperparameter Tuning. Consider exploring tuning of model hyperparameters such
as the number of units, training epochs, batch size, and more.

If you explore any of these extensions, I’d love to know.

25.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Getting started with the Keras Sequential model.
https://keras.io/getting-started/sequential-model-guide/

� Getting started with the Keras functional API.
https://keras.io/getting-started/functional-api-guide/

� Keras Sequential Model API.
https://keras.io/models/sequential/

� Keras Core Layers API.
https://keras.io/layers/core/

� Keras Convolutional Layers API.
https://keras.io/layers/convolutional/

� Keras Pooling Layers API.
https://keras.io/layers/pooling/

� Keras Recurrent Layers API.
https://keras.io/layers/recurrent/

25.8 Summary

In this tutorial, you discovered three recurrent neural network architectures for modeling an
activity recognition time series classification problem. Specifically, you learned:

� How to develop a Long Short-Term Memory Recurrent Neural Network for human activity
recognition.

https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/models/sequential/
https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/
https://keras.io/layers/recurrent/
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� How to develop a one-dimensional Convolutional Neural Network LSTM, or CNN-LSTM,
model.

� How to develop a one-dimensional Convolutional LSTM, or ConvLSTM, model for the
same problem.

25.8.1 Next

This is the final lesson of this part, the next part will provide resources that you can use to
learn more about deep learning methods and time series forecasting.
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Appendix A

Getting Help

This is just the beginning of your journey with deep learning for time series forecasting with
Python. As you start to work on methods or expand your existing knowledge of algorithms you
may need help. This chapter points out some of the best sources of help.

A.1 Applied Time Series

There are a wealth of good books on applied time series suitable for the machine learning
perspective. Most are focused on time series using the R platform. Nevertheless, even though
the code is not directly usable, the concepts, methods and descriptions are still valuable. This
section lists some useful books on applied time series that you may consider.

� Rob J. Hyndman and George Athanasopoulos, Forecasting: principles and practice, 2013.
http://amzn.to/2lln93c

� Galit Shmueli and Kenneth Lichtendahl, Practical Time Series Forecasting with R: A
Hands-On Guide, 2016.
http://amzn.to/2k3QpuV

� Paul S. P. Cowpertwait and Andrew V. Metcalfem Introductory Time Series with R, 2009.
http://amzn.to/2kIQscS

A.2 Official Keras Destinations

This section lists the official Keras sites that you may find helpful.

� Keras Official Blog.
https://blog.keras.io/

� Keras API Documentation.
https://keras.io/

� Keras Source Code Project.
https://github.com/keras-team/keras
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A.3 Where to Get Help with Keras

This section lists the 9 best places I know where you can get help with Keras.

� Keras Users Google Group.
https://groups.google.com/forum/#!forum/keras-users

� Keras Slack Channel (you must request to join).
https://keras-slack-autojoin.herokuapp.com/

� Keras on Gitter.
https://gitter.im/Keras-io/Lobby#

� Keras tag on StackOverflow.
https://stackoverflow.com/questions/tagged/keras

� Keras tag on CrossValidated.
https://stats.stackexchange.com/questions/tagged/keras

� Keras tag on DataScience.
https://datascience.stackexchange.com/questions/tagged/keras

� Keras Topic on Quora.
https://www.quora.com/topic/Keras

� Keras Github Issues.
https://github.com/keras-team/keras/issues

� Keras on Twitter.
https://twitter.com/hashtag/keras

A.4 Time Series Datasets

This section lists some websites where you can download free time series datasets on which to
practice.

A.4.1 DataMarket

The DataMarket website hosts many univariate datasets that can be downloaded for free (e.g.
Click the Export tab on any dataset and choose the data format). All of the univariate datasets
demonstrated in this book can also be downloaded from DataMarket. A good place to start
is the Time Series Data Library created by Rob Hyndman, Professor of Statistics at Monash
University, Australia.

� Time Series Data Library, DataMarket.
https://datamarket.com/data/list/?q=provider:tsdl

https://groups.google.com/forum/#!forum/keras-users
https://keras-slack-autojoin.herokuapp.com/
https://gitter.im/Keras-io/Lobby#
https://stackoverflow.com/questions/tagged/keras
https://stats.stackexchange.com/questions/tagged/keras
https://datascience.stackexchange.com/questions/tagged/keras
https://www.quora.com/topic/Keras
https://github.com/keras-team/keras/issues
https://twitter.com/hashtag/keras
https://datamarket.com/data/list/?q=provider:tsdl
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A.4.2 UCI Machine Learning Repository

The University of California at Irvine hosts a large number of free machine learning datasets,
including many for time series forecasting and time series classification. Some examples of time
series datasets on the UCI repository include:

� EEG Eye State Dataset.
http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

� Room Occupancy Detection Dataset.
http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

� Beijing PM2.5 Air Pollution Dataset.
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

A.4.3 Past Kaggle Competitions

Kaggle hosts prediction competitions and the datasets used in old competitions are made freely
available. You must create an account with Kaggle in order to access the download the datasets.
Some examples of time series datasets on Kaggle include:

� Web Traffic Time Series Forecasting Dataset.
https://www.kaggle.com/c/web-traffic-time-series-forecasting

� EMC Data Science Global Hackathon (Air Quality Prediction) Dataset.
https://www.kaggle.com/c/dsg-hackathon

� Rossmann Store Sales Dataset.
https://www.kaggle.com/c/rossmann-store-sales

If you explore any of these datasets, I’d love to hear about it.

A.5 How to Ask Questions

Knowing where to get help is the first step, but you need to know how to get the most out of
these resources. Below are some tips that you can use:

� Boil your question down to the simplest form. E.g. not something broad like my model
does not work or how does x work.

� Search for answers before asking questions.

� Provide complete code and error messages.

� Boil your code down to the smallest possible working example that demonstrates the issue.

These are excellent resources both for posting unique questions, but also for searching
through the answers to questions on related topics.

http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://www.kaggle.com/c/web-traffic-time-series-forecasting
https://www.kaggle.com/c/dsg-hackathon
https://www.kaggle.com/c/rossmann-store-sales
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A.6 Contact the Author

You are not alone. If you ever have any questions about time series forecasting or this book,
please contact me directly. I will do my best to help.

Jason Brownlee
Jason@MachineLearningMastery.com



Appendix B

How to Setup a Workstation for
Python

It can be difficult to install a Python machine learning environment on some platforms. Python
itself must be installed first and then there are many packages to install, and it can be confusing
for beginners. In this tutorial, you will discover how to setup a Python machine learning
development environment using Anaconda.

After completing this tutorial, you will have a working Python environment to begin learning,
practicing, and developing machine learning and deep learning software. These instructions are
suitable for Windows, macOS, and Linux platforms. I will demonstrate them on macOS, so you
may see some mac dialogs and file extensions.

B.1 Overview

In this tutorial, we will cover the following steps:

1. Download Anaconda

2. Install Anaconda

3. Start and Update Anaconda

4. Install Deep Learning Libraries

Note: The specific versions may differ as the software and libraries are updated frequently.

B.2 Download Anaconda

In this step, we will download the Anaconda Python package for your platform. Anaconda is a
free and easy-to-use environment for scientific Python.

� 1. Visit the Anaconda homepage.
https://www.continuum.io/

� 2. Click Anaconda from the menu and click Download to go to the download page.
https://www.continuum.io/downloads
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Figure B.1: Click Anaconda and Download.

� 3. Choose the download suitable for your platform (Windows, OSX, or Linux):

– Choose Python 3.6

– Choose the Graphical Installer
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Figure B.2: Choose Anaconda Download for Your Platform.

This will download the Anaconda Python package to your workstation. I’m on macOS, so I
chose the macOS version. The file is about 426 MB. You should have a file with a name like:

Anaconda3-4.4.0-MacOSX-x86_64.pkg

Listing B.1: Example filename on macOS.

B.3 Install Anaconda

In this step, we will install the Anaconda Python software on your system. This step assumes
you have sufficient administrative privileges to install software on your system.

� 1. Double click the downloaded file.

� 2. Follow the installation wizard.
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Figure B.3: Anaconda Python Installation Wizard.

Installation is quick and painless. There should be no tricky questions or sticking points.
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Figure B.4: Anaconda Python Installation Wizard Writing Files.

The installation should take less than 10 minutes and take up a little more than 1 GB of
space on your hard drive.

B.4 Start and Update Anaconda

In this step, we will confirm that your Anaconda Python environment is up to date. Anaconda
comes with a suite of graphical tools called Anaconda Navigator. You can start Anaconda
Navigator by opening it from your application launcher.
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Figure B.5: Anaconda Navigator GUI.

You can use the Anaconda Navigator and graphical development environments later; for now,
I recommend starting with the Anaconda command line environment called conda. Conda is
fast, simple, it’s hard for error messages to hide, and you can quickly confirm your environment
is installed and working correctly.

� 1. Open a terminal (command line window).

� 2. Confirm conda is installed correctly, by typing:

conda -V

Listing B.2: Check the conda version.

You should see the following (or something similar):

conda 4.3.21

Listing B.3: Example conda version.

� 3. Confirm Python is installed correctly by typing:

python -V

Listing B.4: Check the Python version.

You should see the following (or something similar):

Python 3.6.1 :: Anaconda 4.4.0 (x86_64)

Listing B.5: Example Python version.
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If the commands do not work or have an error, please check the documentation for help for
your platform. See some of the resources in the Further Reading section.

� 4. Confirm your conda environment is up-to-date, type:

conda update conda

conda update anaconda

Listing B.6: Update conda and anaconda.

You may need to install some packages and confirm the updates.

� 5. Confirm your SciPy environment.

The script below will print the version number of the key SciPy libraries you require for
machine learning development, specifically: SciPy, NumPy, Matplotlib, Pandas, Statsmodels,
and Scikit-learn. You can type python and type the commands in directly. Alternatively, I
recommend opening a text editor and copy-pasting the script into your editor.

# check library version numbers

# scipy

import scipy

print('scipy: %s' % scipy.__version__)

# numpy

import numpy

print('numpy: %s' % numpy.__version__)

# matplotlib

import matplotlib

print('matplotlib: %s' % matplotlib.__version__)

# pandas

import pandas

print('pandas: %s' % pandas.__version__)

# statsmodels

import statsmodels

print('statsmodels: %s' % statsmodels.__version__)

# scikit-learn

import sklearn

print('sklearn: %s' % sklearn.__version__)

Listing B.7: Code to check that key Python libraries are installed.

Save the script as a file with the name: versions.py. On the command line, change your
directory to where you saved the script and type:

python versions.py

Listing B.8: Run the script from the command line.

You should see output like the following:

scipy: 1.1.0

numpy: 1.15.0

matplotlib: 2.2.2

pandas: 0.23.1

statsmodels: 0.9.0

sklearn: 0.19.1

Listing B.9: Sample output of versions script.
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B.5 Install Deep Learning Libraries

In this step, we will install Python libraries used for deep learning, specifically: Theano,
TensorFlow, and Keras. Note: I recommend using Keras for deep learning and Keras only
requires one of Theano or TensorFlow to be installed. You do not need both. There may be
problems installing TensorFlow on some Windows machines.

� 1. Install the Theano deep learning library by typing:

conda install theano

Listing B.10: Install Theano with conda.

� 2. Install the TensorFlow deep learning library by typing:

conda install -c conda-forge tensorflow

Listing B.11: Install TensorFlow with conda.

Alternatively, you may choose to install using pip and a specific version of TensorFlow for
your platform.

� 3. Install Keras by typing:

pip install keras

Listing B.12: Install Keras with pip.

� 4. Confirm your deep learning environment is installed and working correctly.

Create a script that prints the version numbers of each library, as we did before for the SciPy
environment.

# theano

import theano

print('theano: %s' % theano.__version__)

# tensorflow

import tensorflow

print('tensorflow: %s' % tensorflow.__version__)

# keras

import keras

print('keras: %s' % keras.__version__)

Listing B.13: Code to check that key deep learning libraries are installed.

Save the script to a file deep versions.py. Run the script by typing:

python deep_versions.py

Listing B.14: Run script from the command line.

You should see output like:

theano: 1.0.2

tensorflow: 1.9.0

keras: 2.2.0

Listing B.15: Sample output of the deep learning versions script.
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B.6 Further Reading

This section provides resources if you want to know more about Anaconda.

� Anaconda homepage.
https://www.continuum.io/

� Anaconda Navigator.
https://docs.continuum.io/anaconda/navigator.html

� The conda command line tool.
http://conda.pydata.org/docs/index.html

� Instructions for installing TensorFlow in Anaconda.
https://www.tensorflow.org/get_started/os_setup#anaconda_installation

B.7 Summary

Congratulations, you now have a working Python development environment for machine learning
and deep learning. You can now learn and practice machine learning and deep learning on your
workstation.

https://www.continuum.io/
https://docs.continuum.io/anaconda/navigator.html
http://conda.pydata.org/docs/index.html
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
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How Far You Have Come

You made it. Well done. Take a moment and look back at how far you have come. You now
know:

� About the promise of neural networks and deep learning methods in general for time series
forecasting.

� How to transform time series data in order to train a supervised learning algorithm, such
as deep learning methods.

� How to develop baseline forecasts using naive and classical methods by which to determine
whether forecasts from deep learning models have skill or not.

� How to develop Multilayer Perceptron, Convolutional Neural Network, Long Short-Term
Memory Networks, and hybrid neural network models for time series forecasting.

� How to forecast univariate, multivariate, multi-step, and multivariate multi-step time
series forecasting problems in general.

� How to transform sequence data into a three-dimensional structure in order to train
convolutional and LSTM neural network models.

� How to grid search deep learning model hyperparameters to ensure that you are getting
good performance from a given model.

� How to prepare data and develop deep learning models for forecasting a range of univariate
time series problems with different temporal structures.

� How to prepare data and develop deep learning models for multi-step forecasting a
real-world household electricity consumption dataset.

� How to prepare data and develop deep learning models for a real-world human activity
recognition project.

Don’t make light of this. You have come a long way in a short amount of time. You have
developed the important and valuable set of skills in developing deep learning models for time
series forecasting. You can now confidently:

� Use naive and classical methods like SARIMA and ETS to quickly develop robust baseline
models for a range of different time series forecasting problems, the performance of which
can be used to challenge whether more elaborate machine learning and deep learning
models are adding value.
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� Transform native time series forecasting data into a form for fitting supervised learning
algorithms and confidently tune the amount of lag observations and framing of the
prediction problem.

� Develop MLP, CNN, RNN, and hybrid deep learning models quickly for a range of different
time series forecasting problems, and confidently evaluate and interpret their performance.

The sky’s the limit.

Thank You!

I want to take a moment and sincerely thank you for letting me help you start your journey
with deep learning methods for time series forecasting. I hope you keep learning and have fun
as you continue to master machine learning.

Jason Brownlee
2018
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